000 04059nam a22004813i 4500
001 EBC4691261
003 MiAaPQ
005 20240729130813.0
006 m o d |
007 cr cnu||||||||
008 240724s2016 xx o ||||0 eng d
020 _a9783319441306
_q(electronic bk.)
020 _z9783319441283
035 _a(MiAaPQ)EBC4691261
035 _a(Au-PeEL)EBL4691261
035 _a(CaPaEBR)ebr11267934
035 _a(CaONFJC)MIL956364
035 _a(OCoLC)959149218
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aTK5102.9
082 0 _a006.42
100 1 _aCaponetti, Laura.
245 1 0 _aFuzzy Logic for Image Processing :
_bA Gentle Introduction Using Java.
250 _a1st ed.
264 1 _aCham :
_bSpringer International Publishing AG,
_c2016.
264 4 _c©2017.
300 _a1 online resource (141 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aSpringerBriefs in Electrical and Computer Engineering Series
505 0 _aIntro -- Preface -- Contents -- About the Authors -- Part I Fundamentals of Fuzzy Image Processing -- 1 Image Representation Using Java -- 1.1 Introduction -- 1.2 Gray-Level Images -- 1.3 Color Models -- 1.4 Color Image Representation Using Java -- References -- 2 Low-Level Image Processing -- 2.1 Introduction -- 2.2 Contrast Enhancement -- 2.2.1 Gray-Level Transformation -- 2.2.2 Thresholding -- 2.2.3 Histogram Transformation -- 2.3 Image Smoothing -- 2.4 Edge Detection -- 2.4.1 Canny Operator -- 2.4.2 Optimization-Based Operators -- References -- 3 Basics of Fuzzy Logic -- 3.1 Introduction -- 3.2 Fuzzy Set Theory -- 3.3 Fuzzy Rule-Based Systems -- 3.3.1 Fuzzification -- 3.3.2 Fuzzy Rule Base and Inference Engine -- 3.3.3 Defuzzification -- 3.4 Fuzzy Models -- 3.4.1 Design of Fuzzy Rule-Based Systems -- 3.4.2 Neuro-Fuzzy Models -- References -- 4 Fuzzy Image Processing -- 4.1 Introduction -- 4.2 Image Fuzzification -- 4.2.1 Fuzzy Image -- 4.3 Image Defuzzification -- 4.4 Fuzziness Measures -- References -- 5 Java for Image Processing -- 5.1 Basic Concepts -- 5.2 Java for Image Processing -- 5.3 Applet -- 5.4 ImageJ -- 5.4.1 Macros -- 5.4.2 Plugins -- 5.5 Fuzzy Systems in Java -- References -- Part II Application to Image Processing -- 6 Color Contrast Enhancement -- 6.1 Introduction -- 6.2 Multichannel Image Processing -- 6.3 Fuzzy Techniques for Color Enhancement -- 6.4 A Fuzzy Rule-Based System for Color Enhancement -- 6.5 Example: Natural Image Enhancement -- References -- 7 Image Segmentation -- 7.1 Introduction -- 7.2 The Segmentation Problem -- 7.3 Methods for Segmentation -- 7.3.1 Crisp Clustering -- 7.3.2 Fuzzy Clustering -- 7.3.3 Spatial Fuzzy Clustering -- 7.4 Example: Color Segmentation -- 7.5 Example: Texture Segmentation -- References -- 8 Morphological Analysis -- 8.1 Mathematical Morphology -- 8.1.1 Morphological Operators.
505 8 _a8.2 Fuzzy Morphology -- 8.3 Example: Biological Image Segmentation -- References -- 9 Image Thresholding -- 9.1 Introduction -- 9.2 Otzu Method -- 9.3 Fuzzy Thresholding -- 9.4 Example: Document Image Analysis -- 9.4.1 Document Segmentation -- 9.4.2 Region Classification -- References -- Appendix A Java Code References -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aComputer software.
655 4 _aElectronic books.
700 1 _aCastellano, Giovanna.
776 0 8 _iPrint version:
_aCaponetti, Laura
_tFuzzy Logic for Image Processing
_dCham : Springer International Publishing AG,c2016
_z9783319441283
797 2 _aProQuest (Firm)
830 0 _aSpringerBriefs in Electrical and Computer Engineering Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4691261
_zClick to View
999 _c117154
_d117154