000 04099nam a22004813i 4500
001 EBC5788264
003 MiAaPQ
005 20240724113801.0
006 m o d |
007 cr cnu||||||||
008 240724s2019 xx o ||||0 eng d
020 _a9781470452575
_q(electronic bk.)
020 _z9781470436216
035 _a(MiAaPQ)EBC5788264
035 _a(Au-PeEL)EBL5788264
035 _a(OCoLC)1104707441
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQC793.5.F42 .F567 2019
082 0 _a516.36
100 1 _aFinster, Felix.
245 1 0 _aSpinors on Singular Spaces and the Topology of Causal Fermion Systems.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2019.
264 4 _c©2019.
300 _a1 online resource (96 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society Series ;
_vv.259
505 0 _aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Basic Definitions and Simple Examples -- Chapter 3. Topological Structures -- 3.1. A Sheaf -- 3.2. A Topological Vector Bundle -- 3.3. A Bundle over a Topological Manifold -- 3.4. A Bundle over a Differentiable Manifold -- Chapter 4. Topological Spinor Bundles -- 4.1. Clifford Sections -- 4.2. Topological Obstructions -- 4.3. The Spin Group -- 4.4. Construction of Bundle Charts -- 4.5. Spin Structures -- Chapter 5. Further Examples -- 5.1. Compact Riemannian Spin Manifolds -- 5.2. Almost-Complex Structures on Riemannian Manifolds -- 5.3. Complex Structures on Riemannian Manifolds -- 5.4. Kähler Structures -- Chapter 6. Tangent Cone Measures and the Tangential Clifford Section -- 6.1. The Tangent Cone Measure -- 6.2. Construction of a Tangential Clifford Section -- 6.3. Construction of a Spin Structure -- Chapter 7. The Topology of Discrete and Singular Fermion Systems -- Chapter 8. Basic Examples -- 8.1. The Euclidean Plane -- 8.2. Two-Dimensional Minkowski Space -- 8.3. The Euclidean Plane with Chiral Asymmetry -- 8.4. The Spin Structure of the Euclidean Plane with Chiral Asymmetry -- 8.5. The Spin Structure of Two-Dimensional Minkowski Space -- Chapter 9. Spinors on Singular Spaces -- 9.1. Singularities of the Conformal Factor -- 9.2. Genuine Singularities of the Curvature Tensor -- 9.3. The Curvature Singularity of Schwarzschild Space-Time -- 9.4. A Lattice System with Non-Trivial Topology -- Acknowledgments -- Bibliography -- Back Cover.
520 _aCausal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aFermions.
650 0 _aContinuum mechanics.
650 0 _aField theory (Physics).
655 4 _aElectronic books.
700 1 _aKamran, Niky.
776 0 8 _iPrint version:
_aFinster, Felix
_tSpinors on Singular Spaces and the Topology of Causal Fermion Systems
_dProvidence : American Mathematical Society,c2019
_z9781470436216
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5788264
_zClick to View
999 _c11363
_d11363