000 05750nam a22004693i 4500
001 EBC4205695
003 MiAaPQ
005 20240729130146.0
006 m o d |
007 cr cnu||||||||
008 240724s2016 xx o ||||0 eng d
020 _a9781118761717
_q(electronic bk.)
035 _a(MiAaPQ)EBC4205695
035 _a(Au-PeEL)EBL4205695
035 _a(CaPaEBR)ebr11136006
035 _a(CaONFJC)MIL881795
035 _a(OCoLC)933442910
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA76.58 -- .M346 2016eb
082 0 _a004.35
100 1 _aMagoules, édéric.
245 1 0 _aParallel Scientific Computing.
250 _a1st ed.
264 1 _aNewark :
_bJohn Wiley & Sons, Incorporated,
_c2016.
264 4 _c©2016.
300 _a1 online resource (287 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aIntro -- Table of Contents -- Title -- Copyright -- Preface -- Introduction -- 1 Computer Architectures -- 1.1. Different types of parallelism -- 1.2. Memory architecture -- 1.3. Hybrid architecture -- 2 Parallelization and Programming Models -- 2.1. Parallelization -- 2.2. Performance criteria -- 2.3. Data parallelism -- 2.4. Vectorization: a case study -- 2.5. Message-passing -- 2.6. Performance analysis -- 3 Parallel Algorithm Concepts -- 3.1. Parallel algorithms for recurrences -- 3.2. Data locality and distribution: product of matrices -- 4 Basics of Numerical Matrix Analysis -- 4.1. Review of basic notions of linear algebra -- 4.2. Properties of matrices -- 5 Sparse Matrices -- 5.1. Origins of sparse matrices -- 5.2. Parallel formation of sparse matrices: shared memory -- 5.3. Parallel formation by block of sparse matrices: distributed memory -- 6 Solving Linear Systems -- 6.1. Direct methods -- 6.2. Iterative methods -- 7 LU Methods for Solving Linear Systems -- 7.1. Principle of LU decomposition -- 7.2. Gauss factorization -- 7.3. Gauss-Jordan factorization -- 7.4. Crout and Cholesky factorizations for symmetric matrices -- 8 Parallelization of LU Methods for Dense Matrices -- 8.1. Block factorization -- 8.2. Implementation of block factorization in a message-passing environment -- 8.3. Parallelization of forward and backward substitutions -- 9 LU Methods for Sparse Matrices -- 9.1. Structure of factorized matrices -- 9.2. Symbolic factorization and renumbering -- 9.3. Elimination trees -- 9.4. Elimination trees and dependencies -- 9.5. Nested dissections -- 9.6. Forward and backward substitutions -- 10 Basics of Krylov Subspaces -- 10.1. Krylov subspaces -- 10.2. Construction of the Arnoldi basis -- 11 Methods with Complete Orthogonalization for Symmetric Positive Definite Matrices.
505 8 _a11.1. Construction of the Lanczos basis for symmetric matrices -- 11.2. The Lanczos method -- 11.3. The conjugate gradient method -- 11.4. Comparison with the gradient method -- 11.5. Principle of preconditioning for symmetric positive definite matrices -- 12 Exact Orthogonalization Methods for Arbitrary Matrices -- 12.1. The GMRES method -- 12.2. The case of symmetric matrices: the MINRES method -- 12.3. The ORTHODIR method -- 12.4. Principle of preconditioning for non-symmetric matrices -- 13 Biorthogonalization Methods for Non-symmetric Matrices -- 13.1. Lanczos biorthogonal basis for non-symmetric matrices -- 13.2. The non-symmetric Lanczos method -- 13.3. The biconjugate gradient method: BiCG -- 13.4. The quasi-minimal residual method: QMR -- 13.5. The BiCGSTAB -- 14 Parallelization of Krylov Methods -- 14.1. Parallelization of dense matrix-vector product -- 14.2. Parallelization of sparse matrix-vector product based on node sets -- 14.3. Parallelization of sparse matrix-vector product based on element sets -- 14.4. Parallelization of the scalar product -- 14.5. Summary of the parallelization of Krylov methods -- 15 Parallel Preconditioning Methods -- 15.1. Diagonal -- 15.2. Incomplete factorization methods -- 15.3. Schur complement method -- 15.4. Algebraic multigrid -- 15.5. The Schwarz additive method of preconditioning -- 15.6. Preconditioners based on the physics -- Appendices -- Appendix 1: Exercises -- A1.1. Parallelization techniques -- A1.2. Matrix analysis -- A1.3. Direct methods -- A1.4. Iterative methods -- A1.5. Domain decomposition methods -- Appendix 2: Solutions -- A2.1. Parallelization techniques -- A2.2. Matrix analysis -- A2.3. Direct methods -- A2.4. Iterative methods -- A2.5. Domain decomposition methods -- Appendix 3: Bibliography and Comments -- A3.1. Parallel algorithms -- A3.2. OpenMP -- A3.3. MPI.
505 8 _aA3.4. Performance tools -- A3.5. Numerical analysis and methods -- A3.6. Finite volume method -- A3.7. Finite element method -- A3.8. Matrix analysis -- A3.9. Direct methods -- A3.10. Iterative methods -- A3.11. Mesh and graph partitioning -- A3.12. Domain decomposition methods -- Bibliography -- Index -- End User License Agreement.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aParallel processing (Electronic computers)--Industrial applications.
655 4 _aElectronic books.
700 1 _aRoux, François-Xavier.
700 1 _aHouzeaux, Guillaume.
776 0 8 _iPrint version:
_aMagoules, édéric
_tParallel Scientific Computing
_dNewark : John Wiley & Sons, Incorporated,c2016
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4205695
_zClick to View
999 _c103514
_d103514