000 06438nam a22005293i 4500
001 EBC4082032
003 MiAaPQ
005 20240729130055.0
006 m o d |
007 cr cnu||||||||
008 240724s2015 xx o ||||0 eng d
020 _a9780128040324
_q(electronic bk.)
020 _z9780128040027
035 _a(MiAaPQ)EBC4082032
035 _a(Au-PeEL)EBL4082032
035 _a(CaPaEBR)ebr11117792
035 _a(CaONFJC)MIL844610
035 _a(OCoLC)929533584
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA432
082 0 _a515.723
100 1 _aYang, Xiao-Jun.
245 1 0 _aLocal Fractional Integral Transforms and Their Applications.
250 _a1st ed.
264 1 _aSan Diego :
_bElsevier Science & Technology,
_c2015.
264 4 _c©2016.
300 _a1 online resource (263 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aFront Cover -- Local Fractional Integral Transforms and Their Applications -- Copyright -- Contents -- List of figures -- List of tables -- Preface -- Chapter 1: Introduction to local fractional derivative and integral operators -- 1.1 Introduction -- 1.1.1 Definitions of local fractional derivatives -- 1.1.2 Comparisons of fractal relaxation equation in fractal kernel functions -- 1.1.3 Comparisons of fractal diffusion equation in fractal kernel functions -- 1.1.4 Fractional derivatives via fractional differences -- 1.1.5 Fractional derivatives with and without singular kernels and other versions of fractional derivatives -- 1.2 Definitions and properties of local fractional continuity -- 1.2.1 Definitions and properties -- 1.2.2 Functions defined on fractal sets -- 1.3 Definitions and properties of local fractional derivative -- 1.3.1 Definitions of local fractional derivative -- 1.3.2 Properties and theorems of local fractional derivatives -- 1.4 Definitions and properties of local fractional integral -- 1.4.1 Definitions of local fractional integrals -- 1.4.2 Properties and theorems of local fractional integrals -- 1.4.3 Local fractional Taylor's theorem for nondifferentiable functions -- 1.4.4 Local fractional Taylor's series for elementary functions -- 1.5 Local fractional partial differential equations in mathematical physics -- 1.5.1 Local fractional partial derivatives -- 1.5.2 Linear and nonlinear partial differential equations in mathematical physics -- 1.5.3 Applications of local fractional partial derivative operator to coordinate systems -- 1.5.4 Alternative observations of local fractional partial differential equations -- Chapter 2: Local fractional Fourier series -- 2.1 Introduction -- 2.2 Definitions and properties -- 2.2.1 Analogous trigonometric form of local fractional Fourier series.
505 8 _a2.2.2 Complex Mittag-Leffler form of local fractional Fourier series -- 2.2.3 Properties of local fractional Fourier series -- 2.2.4 Theorems of local fractional Fourier series -- 2.3 Applications to signal analysis -- 2.4 Solving local fractional differential equations -- 2.4.1 Applications of local fractional ordinary differential equations -- 2.4.2 Applications of local fractional partial differential equations -- Chapter 3: Local fractional Fourier transform and applications -- 3.1 Introduction -- 3.2 Definitions and properties -- 3.2.1 Mathematical mechanism is the local fractional Fourier transform operator -- 3.2.2 Definitions of the local fractional Fourier transform operators -- 3.2.3 Properties and theorems of local fractional Fourier transform operator -- 3.2.4 Properties and theorems of the generalized local fractional Fourier transform operator -- 3.3 Applications to signal analysis -- 3.3.1 The analogous distributions defined on Cantor sets -- 3.3.2 Applications of signal analysis on Cantor sets -- 3.4 Solving local fractional differential equations -- 3.4.1 Applications of local fractional ordinary differential equations -- 3.4.2 Applications of local fractional partial differential equations -- Chapter 4: Local fractional Laplace transform and applications -- 4.1 Introduction -- 4.2 Definitions and properties -- 4.2.1 The basic definitions of the local fractional Laplace transform operators -- 4.2.2 The properties and theorems for the local fractional Laplace transform operator -- 4.3 Applications to signal analysis -- 4.4 Solving local fractional differential equations -- 4.4.1 Applications of local fractional ordinary differential equations -- 4.4.2 Applications of local fractional partial differential equations -- Chapter 5: Coupling the local fractional Laplace transform with analytic methods -- 5.1 Introduction.
505 8 _a5.2 Variational iteration method of the local fractional operator -- 5.3 Decomposition method of the local fractional operator -- 5.4 Coupling the Laplace transform with variational iteration method of the local fractional operator -- 5.5 Coupling the Laplace transform with decomposition method of the local fractional operator -- Appendix A: The analogues of trigonometric functions defined on Cantor sets -- Appendix B: Local fractional derivatives of elementary functions -- Appendix C: Local fractional Maclaurin's series of elementary functions -- Appendix D: Coordinate systems of Cantor-type cylindrical and Cantor-type spherical coordinates -- Appendix E: Tables of local fractional Fourier transform operators -- Appendix F: Tables of local fractional Laplace transform operators -- Bibliography -- Index -- Back Cover.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aIntegral transforms.
650 0 _aFractional calculus.
655 4 _aElectronic books.
700 1 _aBaleanu, Dumitru.
700 1 _aSrivastava, Hari M.
700 1 _aYang, Xiao-Jun.
700 1 _aBaleanu, Dumitru.
700 1 _aSrivastava, Hari Mohan.
776 0 8 _iPrint version:
_aYang, Xiao-Jun
_tLocal Fractional Integral Transforms and Their Applications
_dSan Diego : Elsevier Science & Technology,c2015
_z9780128040027
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4082032
_zClick to View
999 _c101740
_d101740