000 | 06438nam a22005293i 4500 | ||
---|---|---|---|
001 | EBC4082032 | ||
003 | MiAaPQ | ||
005 | 20240729130055.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2015 xx o ||||0 eng d | ||
020 |
_a9780128040324 _q(electronic bk.) |
||
020 | _z9780128040027 | ||
035 | _a(MiAaPQ)EBC4082032 | ||
035 | _a(Au-PeEL)EBL4082032 | ||
035 | _a(CaPaEBR)ebr11117792 | ||
035 | _a(CaONFJC)MIL844610 | ||
035 | _a(OCoLC)929533584 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA432 | |
082 | 0 | _a515.723 | |
100 | 1 | _aYang, Xiao-Jun. | |
245 | 1 | 0 | _aLocal Fractional Integral Transforms and Their Applications. |
250 | _a1st ed. | ||
264 | 1 |
_aSan Diego : _bElsevier Science & Technology, _c2015. |
|
264 | 4 | _c©2016. | |
300 | _a1 online resource (263 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aFront Cover -- Local Fractional Integral Transforms and Their Applications -- Copyright -- Contents -- List of figures -- List of tables -- Preface -- Chapter 1: Introduction to local fractional derivative and integral operators -- 1.1 Introduction -- 1.1.1 Definitions of local fractional derivatives -- 1.1.2 Comparisons of fractal relaxation equation in fractal kernel functions -- 1.1.3 Comparisons of fractal diffusion equation in fractal kernel functions -- 1.1.4 Fractional derivatives via fractional differences -- 1.1.5 Fractional derivatives with and without singular kernels and other versions of fractional derivatives -- 1.2 Definitions and properties of local fractional continuity -- 1.2.1 Definitions and properties -- 1.2.2 Functions defined on fractal sets -- 1.3 Definitions and properties of local fractional derivative -- 1.3.1 Definitions of local fractional derivative -- 1.3.2 Properties and theorems of local fractional derivatives -- 1.4 Definitions and properties of local fractional integral -- 1.4.1 Definitions of local fractional integrals -- 1.4.2 Properties and theorems of local fractional integrals -- 1.4.3 Local fractional Taylor's theorem for nondifferentiable functions -- 1.4.4 Local fractional Taylor's series for elementary functions -- 1.5 Local fractional partial differential equations in mathematical physics -- 1.5.1 Local fractional partial derivatives -- 1.5.2 Linear and nonlinear partial differential equations in mathematical physics -- 1.5.3 Applications of local fractional partial derivative operator to coordinate systems -- 1.5.4 Alternative observations of local fractional partial differential equations -- Chapter 2: Local fractional Fourier series -- 2.1 Introduction -- 2.2 Definitions and properties -- 2.2.1 Analogous trigonometric form of local fractional Fourier series. | |
505 | 8 | _a2.2.2 Complex Mittag-Leffler form of local fractional Fourier series -- 2.2.3 Properties of local fractional Fourier series -- 2.2.4 Theorems of local fractional Fourier series -- 2.3 Applications to signal analysis -- 2.4 Solving local fractional differential equations -- 2.4.1 Applications of local fractional ordinary differential equations -- 2.4.2 Applications of local fractional partial differential equations -- Chapter 3: Local fractional Fourier transform and applications -- 3.1 Introduction -- 3.2 Definitions and properties -- 3.2.1 Mathematical mechanism is the local fractional Fourier transform operator -- 3.2.2 Definitions of the local fractional Fourier transform operators -- 3.2.3 Properties and theorems of local fractional Fourier transform operator -- 3.2.4 Properties and theorems of the generalized local fractional Fourier transform operator -- 3.3 Applications to signal analysis -- 3.3.1 The analogous distributions defined on Cantor sets -- 3.3.2 Applications of signal analysis on Cantor sets -- 3.4 Solving local fractional differential equations -- 3.4.1 Applications of local fractional ordinary differential equations -- 3.4.2 Applications of local fractional partial differential equations -- Chapter 4: Local fractional Laplace transform and applications -- 4.1 Introduction -- 4.2 Definitions and properties -- 4.2.1 The basic definitions of the local fractional Laplace transform operators -- 4.2.2 The properties and theorems for the local fractional Laplace transform operator -- 4.3 Applications to signal analysis -- 4.4 Solving local fractional differential equations -- 4.4.1 Applications of local fractional ordinary differential equations -- 4.4.2 Applications of local fractional partial differential equations -- Chapter 5: Coupling the local fractional Laplace transform with analytic methods -- 5.1 Introduction. | |
505 | 8 | _a5.2 Variational iteration method of the local fractional operator -- 5.3 Decomposition method of the local fractional operator -- 5.4 Coupling the Laplace transform with variational iteration method of the local fractional operator -- 5.5 Coupling the Laplace transform with decomposition method of the local fractional operator -- Appendix A: The analogues of trigonometric functions defined on Cantor sets -- Appendix B: Local fractional derivatives of elementary functions -- Appendix C: Local fractional Maclaurin's series of elementary functions -- Appendix D: Coordinate systems of Cantor-type cylindrical and Cantor-type spherical coordinates -- Appendix E: Tables of local fractional Fourier transform operators -- Appendix F: Tables of local fractional Laplace transform operators -- Bibliography -- Index -- Back Cover. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aIntegral transforms. | |
650 | 0 | _aFractional calculus. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aBaleanu, Dumitru. | |
700 | 1 | _aSrivastava, Hari M. | |
700 | 1 | _aYang, Xiao-Jun. | |
700 | 1 | _aBaleanu, Dumitru. | |
700 | 1 | _aSrivastava, Hari Mohan. | |
776 | 0 | 8 |
_iPrint version: _aYang, Xiao-Jun _tLocal Fractional Integral Transforms and Their Applications _dSan Diego : Elsevier Science & Technology,c2015 _z9780128040027 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4082032 _zClick to View |
999 |
_c101740 _d101740 |