Multiphase Flow Research.
Material type:
- text
- computer
- online resource
- 9781608764792
- 620.1064
- TA357.5.M84 -- M855 2009eb
Intro -- MULTIPHASE FLOW RESEARCH -- MULTIPHASE FLOW RESEARCH -- CONTENTS -- PREFACE -- RESEARCH AND REVIEW STUDIES -- Chapter 1NUMERICAL SIMULATION OF MULTIPHASE FLOWSYSTEMS -- Abstract -- List of Symbols -- Latin Symbols -- Greek Symbols -- Dimensionless Numbers -- Indices -- 1. Introduction -- 2. Basics of Computational Fluid Dynamics with Single PhaseFlows -- 2.1. Basic Equations of Fluid Mechanics -- 2.1.1. Total Mass Balance -- 2.1.2. Momentum Balance -- 2.1.3. Thermal Energy Balance -- 2.1.4. Species Balance -- 2.2. Turbulent Flow -- 2.2.1. Reynolds Equations -- 2.2.2. Turbulence Models -- 2.2.2.1. k-ε-Model -- 2.2.2.2. Reynolds Stress Models -- 2.3. Numerical Solution Procedures -- 2.3.1. Finite-Difference Scheme -- 2.3.2. Finite-Volume Scheme -- 2.3.3. Time-Marching Schemes -- References -- 3. Basics of Multiphase Flow Systems -- References -- 4. Euler-Lagrange Models -- 4.1. Basics of Euler-Lagrange Models -- 4.2. Forces -- 4.2.1. Volume Forces -- 4.2.2. Drag Force -- 4.2.2.1. Drag Force According to Stokes for Spherical Particles -- 4.2.2.2. General Approach of the Drag Force for Spherical Particles in the ContinuumRegime -- 4.2.2.3. General Approach of the Drag Force for Non-Spherical Particles in theContinuum Regime -- 4.2.2.4. Drag Force for Spherical Particles in the Molecular Regime -- 4.2.3. Rotating Particles - Magnus Force -- 4.2.4. Particles in Shear Flow - Saffman Force -- 4.2.5. Added-Mass Force -- 4.2.6. Basset Force -- 4.3. Gas Bubbles with Deformable Interfaces -- 4.4. Transport Equations -- 4.5. Numerical Solution Procedure -- 4.5.1. Spatial Discretization -- 4.5.2. Choice of Time Steps -- 4.5.3. Uncoupled and Coupled Solution Algorithm and Numerical Integration of theParticle Transport Equation -- 4.6. Particles in Turbulent Flow Regimes -- 4.6.1. Stochastic Particle Tracking -- 4.6.2. Cloud Model.
4.7. Particle-Wall Collisions -- 4.7.1. Elastic and Plastic Collision -- 4.7.1.1. Slipping Collision -- 4.7.1.2. Non-slipping Collision -- 4.7.2. Wall Roughness -- 4.8. Particle-Particle Collisions -- References -- 5. Discrete Particle Models -- 5.1. Immersed Boundary Method -- 5.1.1. Implementation -- 5.1.2. Continuous Forcing -- 5.1.2.1. Elastic Boundaries -- 5.1.2.2. Rigid Boundaries -- 5.1.3. Enhanced Continuous Forcing -- 5.1.4. Discrete Forcing -- 5.1.5. Comparison between Discrete and Continuous Forcing -- 5.1.6. Flows with Moving Boundaries -- 5.2. Body-Fitted Simulation of Rigid Particles -- 5.2.1. Scheme about the Finite-Size Particle Model -- 5.2.2. Determination of the Particle Motion -- 5.2.3. Implementation of Collisions -- 5.2.4. Grid Adaptation -- 5.2.5. Evaluation of the Simulation Method -- 5.3. Discrete Element Models -- 5.3.1. Contact Forces -- 5.3.2. Non-contact Forces -- 5.3.3. Particle-Fluid Interaction Forces -- 5.3.4. Particle Fluid Flow - Coupling of DEM and CFD -- References -- 6. Basics of Euler-Euler Models -- 6.1. Basic Equations -- 6.1.1. Local Instantaneous Equations -- 6.1.2. General Averaging Technique -- 6.2. Coupling Equations and Interphase Exchange Cefficients -- 6.2.1. Constitutive Laws -- 6.2.2. Transfer Laws -- 6.3. Turbulence Models -- 6.3.1. Mixture Turbulence Model -- 6.3.2. The Dispersed Turbulence Model -- 6.3.2.1. Turbulence in the Continuous Phase -- 6.3.2.2. Turbulence in the Dispersed Phase -- 6.3.3. Turbulence Model for the Particulate Phase -- 6.3.4. Turbulence Model for each Phase -- 6.3.5. The Reynolds Stress Model -- 6.4. The Mixture Model -- References -- 7. Models for Free Boundaries -- 7.1. Description of Free Boundaries -- 7.1.1. Physical Description of Free Boundaries -- 7.1.2. Surface Tension Forces -- 7.2. Volume-of-Fluid Method -- 7.2.1. Basic Equations.
7.2.2. Numerical Solution Procedure -- 7.2.3. Reconstruction of Phase Interfaces -- 7.3. Level-Set Method -- 7.3.1. Basic Equations -- 7.3.2. Numerical Solution Procedure -- 7.4. Boundary-Integral Method -- 7.4.1. Basic Equations -- 7.4.2. Numerical Solution Procedure -- 7.4.2.1. Boundary-Element method, Generation of the Computation Grid, GridAdaptation -- 7.4.2.2. Numerical Solution of the Boundary-Integral Equations -- 7.5. Comprehension -- References -- 8. Population Balances -- 8.1. Population Balance Equation -- 8.2. Kinetic Approaches -- 8.3. Discretization of the Population Balances -- 8.4. Method of Moments -- References -- Chapter 2MODELING MULTIPHASE FLOW WITH PHASECHANGE AND HEAT TRANSFER: STATUS REVIEW,CHALLENGES AND FUTURE RESEARCH DIRECTION -- Abstract -- 1. Introduction to Multiphase Flow -- 2. Multiphase Flow with Phase Change Heat Transfer -- 3. Multiphase Flow Modeling Techniques -- 3.1. Macroscopic Modeling Techniques with Interface Tracking/ Capturing -- 3.1.1. Interface Capturing Techniques -- 3.1.1.1. Volume of Fluid (VOF) Method -- 3.1.1.2. Level Set (LS) Method -- 3.1.1.3. Combination of VOF and LS Method -- 3.1.2. Interface Tracking Methods -- 3.1.3. Arbitrary Lagrangian Eulerian (ALE) Method -- 3.2. Macroscopic Modeling Techniques without Interface Tracking/Capturing -- 3.2.1. Dispersed Phase Model (DPM) -- 3.2.2. Eulerian Multiphase Model (EMM) -- 3.2.3. Algebraic Slip Model (ASM) -- 3.2.4. Eulerian Granular Multiphase Model (EGMM) -- 3.2.5. Smoothed Particle Hydrodynamics (SPH) -- 3.3. Mesoscopic Modeling Techniques -- 3.3.1. Dissipative Particle Dynamics (DPD) -- 3.3.2. Lattice Boltzmann Method (LBM) -- 3.4. Molecular Modeling Techniques -- 3.4.1. Molecular Dynamics (MD) -- 4. Status Review on Multiphase Flow Modeling with Phase ChangeHeat Transfer through Interface Capturing Techniques.
4.1. Solution of Incompressible Navier-Stokes Equations -- 4.2. Benchmark problems for Validation of Phase Change -- 4.2.1. Rayleigh-Taylor Instability Problem -- 4.2.2. Bubble Growth Problem -- 4.2.3. Stefan Problem -- 4.2.4. Sucking Interface Problem -- 4.3. Modeling Bubble Dynamics and Heat Transfer -- 4.3.1. Nucleate Boiling -- 4.3.2. Film Boiling -- 4.3.3. Flow Boiling in Microchannel -- 4.4. Modeling Droplet and Surface Interaction -- 4.5. Modeling Droplet and Bubble Dynamics in Thin Liquid Film -- 4.5.1. Spray Cooling -- 4.5.2. Need for Modeling Droplet and Bubble Dynamics in Thin Liquid Film -- 4.5.3. Numerical Formulation -- 4.5.3.1. Assumptions of the Multiphase Model for Droplet-Bubble dynamics in Thin Film -- 4.5.3.2. Governing Equations -- 4.5.3.3. Non-dimensional Form of the Governing Equations -- 4.5.3.4. Numerical Solution -- 4.5.3.5. Computational Domain and Grid Generation -- 4.5.3.6. Boundary Condition -- 4.5.4. Single Bubble Growth and Bursting -- 4.5.5. Single Droplet-Bubble Dynamics and Heat Transfer -- 4.5.5.1. Simulation Details -- 4.5.5.2. Results and Discussions -- 4.5.6. Mechanism of Spray Cooling Heat Transfer from Thin Film Model -- 4.5.7. Parametric Studies of Spray Cooling -- 4.5.7.1. Effect of Droplet Velocity and Wall Superheat -- 4.5.7.2. Effect of Density Ratio -- 4.5.7.3. Effect of Bubble Size -- 4.5.7.4. Effect of Thermal Boundary Layer on Interface Dynamics -- 4.5.7.5. Effect of Droplet Sub-cooling -- 4.5.7.6. Effect of Liquid Film Thickness -- 4.5.7.7. Effect of Gravity -- 4.5.8. Modeling the Effect of Thermophysical Properties -- 4.5.9. Comparison of Spray Cooling Heat Flux: 3-D Model vs. Experiment -- 4.5.10. Modeling Convective Flow Effect on Bubble Growth and Heat transfer -- 4.5.11. Multiple Droplet-Bubble Dynamics and Heat Transfer -- 4.5.11.1. Simulation Details and Initial Condition.
4.5.11.2. Multiple Droplet-Bubble Interaction and Heat Transfer for Droplets ImpingingSimultaneously vs. Droplets Impinging at Different Times -- 4.6. Implementation of Multiphase Flow Modeling in Parallel Computing -- 4.6.1. Need for Parallel Computing -- 4.6.2. Domain Decomposition -- 4.6.3. Efficient Solvers for Distributed Parallel Computing -- 4.6.4. Performance Enhancement using MGCG Solver with Different Levels inParallel Computing Environment -- 4.6.5. Speed Up and Efficiency Study for Parallel Computing -- 5. Understanding and Limitation of Bubble Nucleation and PhaseChange Heat Transfer through Macroscale Modeling -- 6. Future Research Directions -- Acknowledgement -- Nomenclature -- Subscripts -- References -- Chapter 3INCORPORATION OF IN-SITU FLOW PARAMETERSAND FLOW PATTERN PHENOMENA INTO AMATHEMATICAL MODEL OF AN AIR-WATERMIXTURE USING CONCOMITANCY CRITERIA BASEDON EXPERIMENTAL STUDIES OF ADVANCED MICROCOOLING MODULES WITH PHASE TRANSITION -- Abstract -- Introduction -- Related Work -- Nomenclature -- Subscripts -- Advanced Micro Cooling Modules -- Two-Phase Flow Model with Flow Patterns -- Experiments and Experimental Data -- Experimental Apparatus -- Experimental Uncertainties -- Experimental Data and Analysis -- Concomitancy of Measurement Systems -- Conclusions and Recommendations -- Biographical Sketches -- References -- Chapter4INFLUENCEOFTHEINTERFACIALDRAGONPRESSURELOSSFORTWOPHASEFLOWANDCOOLABILITYINPOROUSMEDIA -- Abstract -- 1.Introduction -- 2.1-phaseFlowthroughPorousMedia -- 3.2-phaseFlowthoughPorousMedia -- 3.1.SimpleModels -- 3.2.ModelsIncludingExplicitInterfacialFriction -- 3.2.1.SchulenbergModel -- 3.2.2.Tung/DhirModel -- ParticlegasdragFpg -- ParticleliquiddragFpl -- InterfacialdragFi -- 3.2.3.ModificationsoftheTung/DhirModel -- 4.ApplicationoftheModels -- 4.1.ComparisontoIsothermalAir/WaterFlowExperiments.
4.2.ComparisontoExperimentswithBoilingDebrisBeds.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.