ORPP logo
Image from Google Jackets

PCB Design Guide to Via and Trace Currents and Temperatures.

By: Contributor(s): Material type: TextTextPublisher: Norwood : Artech House, 2021Copyright date: ©2021Edition: 1st edDescription: 1 online resource (293 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781630818616
Subject(s): Genre/Form: Additional physical formats: Print version:: PCB Design Guide to Via and Trace Currents and TemperaturesDDC classification:
  • 621.381531
LOC classification:
  • TK7868.P7 B766 2021
Online resources:
Contents:
Intro -- Contents -- Preface -- Technical Note: TRM -- Acknowledgments -- Chapter 1 Introduction and Historical Background -- 1.1 Bottom Line -- 1.2 Historical Background -- 1.3 A Note about Consistency -- End Notes -- Chapter 2 Materials Used in PCBs -- 2.1 Bottom Line -- 2.2 Background -- 2.3 Copper Used in PCBs -- 2.3.1 Copper-clad laminates -- 2.3.2 Copper Plating Manufacturing Step -- 2.3.3 Copper Resistivity -- 2.3.4 Summary -- 2.4 Dielectrics Used in PCBs -- 2.4.1 Thermal Conductivity (Tcon or k) -- 2.4.2 Glass Transition Temperature (Tg) -- 2.4.3 Decomposition Temperature (Td) -- 2.4.4 Time to Delamination (T260/T288) -- 2.4.5 Summary -- End Notes -- Chapter 3 Resistivity and Resistance -- 3.1 Bottom Line -- 3.2 Resistivity -- 3.3 Resistance -- 3.4 Thermal Coefficient of Resistivity (a) -- 3.5 Measuring Resistivity -- 3.5.1 Resistivity Investigation -- 3.5.2 Nondestructive Measurements -- End Notes -- Chapter 4 Trace Heating and Cooling -- 4.1 Bottom Line -- 4.2 Overview -- 4.3 Trace Heating -- 4.3.1 Power and Energy -- 4.3.2 Trace Heating -- 4.4 Trace Cooling -- 4.4.1 Conductive Cooling -- 4.5 Mathematical Model of Trace Heating and Cooling -- 4.6 Role of Current Density -- 4.7 Measuring Trace Temperature -- 4.7.1 IPC Procedure -- 4.7.2 Infrared Measurement -- 4.7.3 Thermocouple Measurement -- 4.7.4 Point versus Average Measurements -- 4.8 Trace Temperature Curves -- 4.8.1 Typical Curve -- 4.8.2 Heavy Overload -- 4.8.3 Marginal Overload -- End Notes -- Chapter 5 IPC Curves -- 5.1 Bottom Line -- 5.2 IPC-2152 -- 5.3 Measuring the Temperature -- 5.4 IPC Curves -- 5.4.1 External Results -- 5.4.2 External IPC Data Equations -- 5.4.3 Internal IPC Data Equations -- 5.4.4 IPC Vacuum Data -- End Notes -- Chapter 6 Thermal Simulations -- 6.1 Bottom Line -- 6.2 Background -- 6.3 Modeling Traces -- 6.4 The Modeling Process -- End Notes.
Chapter 7 Thermal Simulations -- 7.1 Bottom Line -- 7.2 Sensitivities: Layout Parameters -- 7.2.1 Small Trace Widths -- 7.2.2 Transient Response -- 7.2.3 Thermal Gradients -- 7.2.4 Changing Trace Length -- 7.2.5 Dimensional Uncertainties -- 7.2.6 Presence of Planes -- 7.2.7 Adjacent Trace -- 7.2.8 Adjacent Trace with Underlying Pla -- 7.2.9 Parallel Power Traces -- 7.2.10 Stacked Power Traces -- 7.2.11 Air Flow -- 7.2.12 Summary -- 7.3 Sensitivities: Material Parameters -- 7.3.1 Board Thickness and Planes -- 7.3.2 Effect of Resistivity -- 7.3.3 Effect of Heat Transfer Coefficien -- 7.3.4 Effects of Thermal Conductivity Co -- 7.3.5 Effect of Trace Thickness -- 7.3.6 Summary -- 7.4 Sensitivities: Trace Depth -- 7.5 Conclusions -- 7.5.1 Call to Action -- End Notes -- Chapter 7 Via Temperatures -- 8.1 Bottom Line -- 8.2 Background Information -- 8.3 Thermal Simulation -- 8.3.1 Simulation Strategy -- 8.3.2 Board Model -- 8.3.3 First Simulation -- 8.3.4 Additional Simulations -- 8.3.5 Two Vias -- 8.3.6 Conclusion -- 8.4 Experimental Verification -- 8.4.1 Simulation -- 8.4.2 Simulation Results -- 8.5 Experimental Results -- 8.5.1 Measured Results -- 8.5.2 Conclusion -- 8.6 Voltage Drop Across Trace and Via -- 8.6.1 Summary -- 8.7 Thermal Vias -- 8.7.1 Special Via -- 8.7.2 Conclusion -- End Notes -- Chapter 9 Current Densities in Vias -- 9.1 Bottom Line -- 9.2 Background -- 9.3 Single Via -- 9.4 Multiple Vias -- 9.5 Multiple Vias and Turn -- 9.6 Conclusions -- End Notes -- Chapter 10 Thinking Outside the Boxes -- 10.1 Bottom Line -- 10.2 Start Thinking Outside Our Boxes -- 10.3 Test Board -- 10.4 Copper Under the Trace -- 10.4.1 Discussion -- 10.5 Adding Additional Copper to Traces -- 10.5.1 Discussion -- 10.6 Dealing with Connecting Links -- 10.6.1 Discussion -- 10.7 Conclusions -- End Notes -- Chapter 11 Fusing Currents: Background -- 11.1 Bottom Line.
11.2 Background -- 11.3 W. H. Preece -- 11.4 I. M. Onderdonk -- 11.4.1 Cautions -- End Notes -- Chapter 12 Fusing Currents: Analyses -- 12.1 Bottom Line -- 12.2 Background -- 12.3 Fusing Time and Temperature -- 12.4 Assumptions and Cautions -- 12.5 Simulation Models -- 12.5.1 Simulation Results, TRM Fuse -- 12.5.2 Simulation Results, TRM Trace -- 12.5.3 Short-time Effects -- 12.5.4 Final Conclusions -- 12.6 Experimental Results: -- 12.6.1 Heating Uncertainties -- 12.6.2 Cooling Uncertainties -- 12.7 The Fusing Process -- 12.7.1 Strong Overload -- 12.7.2 Slight Overload -- 12.8 Experimental Results -- 12.8.1 Case A: Fast Fusing -- 12.8.2 Case B: Slow Fusing -- 12.8.3 Other Cases -- 12.9 Summary -- End Notes -- Chapter 13 Do Traces Heat Uniformly? -- 13.1 Bottom Line -- 13.2 Background -- 13.3 Thermal Gradients on Traces -- 13.3.1 Thermal Gradients on Narrow Trace -- 13.3.2 Does Trace Thickness Matter? -- 13.3.3 Is Trace Thickness Uniform? -- 13.3.4 What Causes Thermal Nonuniformity -- 13.3.5 Conclusion -- 13.4 Thermal Gradients Around Corners -- 13.4.1 Software Simulation -- 13.4.2 Experimental Verification -- 13.4.3 Conclusions -- End Notes -- Chapter 14 Stop Thinking about Current Density -- 14.1 Bottom Line -- 14.2 Background -- 14.3 Current Density Is Not an Independe -- 14.4 IPC Curves -- 14.5 Copper Type -- 14.6 Dielectric Type -- 14.7 Right-Angle Corners -- 14.8 Trace Form Factor -- 14.9 Via Current Densities -- 14.10 Conclusion -- Chapter 15 AC Currents -- 15.1 Bottom Line -- 15.2 Digital Simulation Models -- 15.2.1 Preliminary Results -- 15.3 Experimental Verification -- 15.3.1 Conclusions -- 15.4 Analog AC Currents -- 15.4.1 Test Circuit -- 15.4.2 RMS Signal Levels -- 15.4.3 Nonlinearities -- 15.4.4 Results -- 15.4.5 Conclusion -- End Notes -- Chapter 16 Industrial CT (X-Ray) Scanning -- 16.1 Bottom Line -- 16.2 Background.
16.3 The Promise -- 16.4 The Microsectioning Process -- 16.5 Industrial CT Scanning -- 16.5.1 Results -- 16.6 Comparison of the Processes -- 16.7 Conclusion -- End Notes -- Appendix A Measuring Thermal Conductivity -- A.1 Measurement -- End Notes -- Appendix B Measuring Resistivity -- B.1 Resistance versus Resistivity -- B.2 How to Measure PCB Trace Resistivity -- B.3 Problem with Ohmmeter Measurement -- B.4 Sources of Measurement Error -- B.4.1 Trace Width -- B.4.2 Trace Length -- B.4.3 Trace Thickness -- B.4.4 Roughness -- B.5 An Experimental Study -- B.5.1 What Is Expected Resistivity? -- B.6 Summary -- End Notes -- Appendix C IPC Internal and Vacuum Curves Fitted wi -- Appdendix D Detailed Set of Equations for the Curves -- Appendix E Current/Temperature Curves, 0.25 to 5.0 -- Appendix F Current Density in Vias -- F.1 Interpretations -- F.1.1 Caution -- F.1.2 Symmetry -- F.2 Single Via Model -- F.3 Single Via Model with Core 1 Broken -- F.4 Simulation of Four Vias, Proceeding -- F.5 Simulation of Four Vias, Traces at R -- Appendix G Derivation of Onderdonk's Equation -- G.1 Onderdonk's Equation -- G.2 Background -- G.2.1 Basic Equation -- G.2.2 Solving the Equation -- G.3 Proof that α * ρ = ρ * α -- End Notes -- Appendix H Results of All Six Fusing Configuration -- Appendix I Nonuniform Heating Patterns -- About the Authors -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Preface -- Technical Note: TRM -- Acknowledgments -- Chapter 1 Introduction and Historical Background -- 1.1 Bottom Line -- 1.2 Historical Background -- 1.3 A Note about Consistency -- End Notes -- Chapter 2 Materials Used in PCBs -- 2.1 Bottom Line -- 2.2 Background -- 2.3 Copper Used in PCBs -- 2.3.1 Copper-clad laminates -- 2.3.2 Copper Plating Manufacturing Step -- 2.3.3 Copper Resistivity -- 2.3.4 Summary -- 2.4 Dielectrics Used in PCBs -- 2.4.1 Thermal Conductivity (Tcon or k) -- 2.4.2 Glass Transition Temperature (Tg) -- 2.4.3 Decomposition Temperature (Td) -- 2.4.4 Time to Delamination (T260/T288) -- 2.4.5 Summary -- End Notes -- Chapter 3 Resistivity and Resistance -- 3.1 Bottom Line -- 3.2 Resistivity -- 3.3 Resistance -- 3.4 Thermal Coefficient of Resistivity (a) -- 3.5 Measuring Resistivity -- 3.5.1 Resistivity Investigation -- 3.5.2 Nondestructive Measurements -- End Notes -- Chapter 4 Trace Heating and Cooling -- 4.1 Bottom Line -- 4.2 Overview -- 4.3 Trace Heating -- 4.3.1 Power and Energy -- 4.3.2 Trace Heating -- 4.4 Trace Cooling -- 4.4.1 Conductive Cooling -- 4.5 Mathematical Model of Trace Heating and Cooling -- 4.6 Role of Current Density -- 4.7 Measuring Trace Temperature -- 4.7.1 IPC Procedure -- 4.7.2 Infrared Measurement -- 4.7.3 Thermocouple Measurement -- 4.7.4 Point versus Average Measurements -- 4.8 Trace Temperature Curves -- 4.8.1 Typical Curve -- 4.8.2 Heavy Overload -- 4.8.3 Marginal Overload -- End Notes -- Chapter 5 IPC Curves -- 5.1 Bottom Line -- 5.2 IPC-2152 -- 5.3 Measuring the Temperature -- 5.4 IPC Curves -- 5.4.1 External Results -- 5.4.2 External IPC Data Equations -- 5.4.3 Internal IPC Data Equations -- 5.4.4 IPC Vacuum Data -- End Notes -- Chapter 6 Thermal Simulations -- 6.1 Bottom Line -- 6.2 Background -- 6.3 Modeling Traces -- 6.4 The Modeling Process -- End Notes.

Chapter 7 Thermal Simulations -- 7.1 Bottom Line -- 7.2 Sensitivities: Layout Parameters -- 7.2.1 Small Trace Widths -- 7.2.2 Transient Response -- 7.2.3 Thermal Gradients -- 7.2.4 Changing Trace Length -- 7.2.5 Dimensional Uncertainties -- 7.2.6 Presence of Planes -- 7.2.7 Adjacent Trace -- 7.2.8 Adjacent Trace with Underlying Pla -- 7.2.9 Parallel Power Traces -- 7.2.10 Stacked Power Traces -- 7.2.11 Air Flow -- 7.2.12 Summary -- 7.3 Sensitivities: Material Parameters -- 7.3.1 Board Thickness and Planes -- 7.3.2 Effect of Resistivity -- 7.3.3 Effect of Heat Transfer Coefficien -- 7.3.4 Effects of Thermal Conductivity Co -- 7.3.5 Effect of Trace Thickness -- 7.3.6 Summary -- 7.4 Sensitivities: Trace Depth -- 7.5 Conclusions -- 7.5.1 Call to Action -- End Notes -- Chapter 7 Via Temperatures -- 8.1 Bottom Line -- 8.2 Background Information -- 8.3 Thermal Simulation -- 8.3.1 Simulation Strategy -- 8.3.2 Board Model -- 8.3.3 First Simulation -- 8.3.4 Additional Simulations -- 8.3.5 Two Vias -- 8.3.6 Conclusion -- 8.4 Experimental Verification -- 8.4.1 Simulation -- 8.4.2 Simulation Results -- 8.5 Experimental Results -- 8.5.1 Measured Results -- 8.5.2 Conclusion -- 8.6 Voltage Drop Across Trace and Via -- 8.6.1 Summary -- 8.7 Thermal Vias -- 8.7.1 Special Via -- 8.7.2 Conclusion -- End Notes -- Chapter 9 Current Densities in Vias -- 9.1 Bottom Line -- 9.2 Background -- 9.3 Single Via -- 9.4 Multiple Vias -- 9.5 Multiple Vias and Turn -- 9.6 Conclusions -- End Notes -- Chapter 10 Thinking Outside the Boxes -- 10.1 Bottom Line -- 10.2 Start Thinking Outside Our Boxes -- 10.3 Test Board -- 10.4 Copper Under the Trace -- 10.4.1 Discussion -- 10.5 Adding Additional Copper to Traces -- 10.5.1 Discussion -- 10.6 Dealing with Connecting Links -- 10.6.1 Discussion -- 10.7 Conclusions -- End Notes -- Chapter 11 Fusing Currents: Background -- 11.1 Bottom Line.

11.2 Background -- 11.3 W. H. Preece -- 11.4 I. M. Onderdonk -- 11.4.1 Cautions -- End Notes -- Chapter 12 Fusing Currents: Analyses -- 12.1 Bottom Line -- 12.2 Background -- 12.3 Fusing Time and Temperature -- 12.4 Assumptions and Cautions -- 12.5 Simulation Models -- 12.5.1 Simulation Results, TRM Fuse -- 12.5.2 Simulation Results, TRM Trace -- 12.5.3 Short-time Effects -- 12.5.4 Final Conclusions -- 12.6 Experimental Results: -- 12.6.1 Heating Uncertainties -- 12.6.2 Cooling Uncertainties -- 12.7 The Fusing Process -- 12.7.1 Strong Overload -- 12.7.2 Slight Overload -- 12.8 Experimental Results -- 12.8.1 Case A: Fast Fusing -- 12.8.2 Case B: Slow Fusing -- 12.8.3 Other Cases -- 12.9 Summary -- End Notes -- Chapter 13 Do Traces Heat Uniformly? -- 13.1 Bottom Line -- 13.2 Background -- 13.3 Thermal Gradients on Traces -- 13.3.1 Thermal Gradients on Narrow Trace -- 13.3.2 Does Trace Thickness Matter? -- 13.3.3 Is Trace Thickness Uniform? -- 13.3.4 What Causes Thermal Nonuniformity -- 13.3.5 Conclusion -- 13.4 Thermal Gradients Around Corners -- 13.4.1 Software Simulation -- 13.4.2 Experimental Verification -- 13.4.3 Conclusions -- End Notes -- Chapter 14 Stop Thinking about Current Density -- 14.1 Bottom Line -- 14.2 Background -- 14.3 Current Density Is Not an Independe -- 14.4 IPC Curves -- 14.5 Copper Type -- 14.6 Dielectric Type -- 14.7 Right-Angle Corners -- 14.8 Trace Form Factor -- 14.9 Via Current Densities -- 14.10 Conclusion -- Chapter 15 AC Currents -- 15.1 Bottom Line -- 15.2 Digital Simulation Models -- 15.2.1 Preliminary Results -- 15.3 Experimental Verification -- 15.3.1 Conclusions -- 15.4 Analog AC Currents -- 15.4.1 Test Circuit -- 15.4.2 RMS Signal Levels -- 15.4.3 Nonlinearities -- 15.4.4 Results -- 15.4.5 Conclusion -- End Notes -- Chapter 16 Industrial CT (X-Ray) Scanning -- 16.1 Bottom Line -- 16.2 Background.

16.3 The Promise -- 16.4 The Microsectioning Process -- 16.5 Industrial CT Scanning -- 16.5.1 Results -- 16.6 Comparison of the Processes -- 16.7 Conclusion -- End Notes -- Appendix A Measuring Thermal Conductivity -- A.1 Measurement -- End Notes -- Appendix B Measuring Resistivity -- B.1 Resistance versus Resistivity -- B.2 How to Measure PCB Trace Resistivity -- B.3 Problem with Ohmmeter Measurement -- B.4 Sources of Measurement Error -- B.4.1 Trace Width -- B.4.2 Trace Length -- B.4.3 Trace Thickness -- B.4.4 Roughness -- B.5 An Experimental Study -- B.5.1 What Is Expected Resistivity? -- B.6 Summary -- End Notes -- Appendix C IPC Internal and Vacuum Curves Fitted wi -- Appdendix D Detailed Set of Equations for the Curves -- Appendix E Current/Temperature Curves, 0.25 to 5.0 -- Appendix F Current Density in Vias -- F.1 Interpretations -- F.1.1 Caution -- F.1.2 Symmetry -- F.2 Single Via Model -- F.3 Single Via Model with Core 1 Broken -- F.4 Simulation of Four Vias, Proceeding -- F.5 Simulation of Four Vias, Traces at R -- Appendix G Derivation of Onderdonk's Equation -- G.1 Onderdonk's Equation -- G.2 Background -- G.2.1 Basic Equation -- G.2.2 Solving the Equation -- G.3 Proof that α * ρ = ρ * α -- End Notes -- Appendix H Results of All Six Fusing Configuration -- Appendix I Nonuniform Heating Patterns -- About the Authors -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.