Automorphisms of Two-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane.
Material type:
- text
- computer
- online resource
- 9781470452537
- 514/.34
- QA174.2 .G653 2019
Cover -- Title page -- List of Figures -- Chapter 1. Introduction -- 1.1. Fricke spaces and Fricke orbits -- 1.2. The orientation-preserving case -- 1.3. The Main Theorem -- Acknowledgements -- Notation and terminology -- Chapter 2. The rank two free group and its automorphisms -- 2.1. The modular group and automorphisms -- 2.2. The tree of superbases -- 2.3. The tricoloring and the planar embedding -- 2.4. Paths and Alternating Geodesics -- 2.5. Relation to the one-holed torus -- 2.6. Effect of a {±1}-character -- Chapter 3. Character varieties and their automorphisms -- 3.1. The deformation space -- 3.2. Sign-changes -- 3.3. Action of automorphisms -- 3.4. Real forms of the character variety -- 3.5. Real and imaginary characters -- 3.6. Invariants of the action -- Chapter 4. Topology of the imaginary commutator trace -- 4.1. Preliminaries -- 4.2. Projection when > -- -2 -- 4.3. The invariant area form -- 4.4. The level set for \le-2 -- Chapter 5. Generalized Fricke spaces -- 5.1. Geometric structures on the two-holed cross-surface -- 5.2. Geometric structures on the one-holed Klein bottle -- 5.3. Lines on the Markoff surface -- Chapter 6. Bowditch theory -- 6.1. The trace labeling associated to a character -- 6.2. The flow associated to a character -- 6.3. Exceptional characters -- 6.4. The Fork Lemma -- 6.5. Alternating geodesics -- 6.6. Indecisive edges and orthogonality -- Chapter 7. Imaginary trace labelings -- 7.1. Well-directed trees -- 7.2. {±1}-characters on \Ft -- 7.3. Positive and negative vertices -- Chapter 8. Imaginary characters with > -- 2 -- 8.1. Alternating geodesics when > -- 2. -- 8.2. The Bowditch set -- 8.3. Planar projection of the Bowditch set -- 8.4. Density of the Bowditch set -- Chapter 9. Imaginary characters with < -- 2. -- 9.1. Existence of elliptics -- 9.2. Alternating geodesics for < -- 2.
9.3. Descending Paths -- 9.4. Ergodicity -- Chapter 10. Imaginary characters with =2. -- Bibliography -- Back Cover.
The automorphisms of a two-generator free group \mathsf F_2 acting on the space of orientation-preserving isometric actions of \mathsf F_2 on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group \Gamma on \mathbb R ^3 by polynomial automorphisms preserving the cubic polynomial \kappa _\Phi (x,y,z) := -x^{2} -y^{2} + z^{2} + x y z -2 and an area form on the level surfaces \kappa _{\Phi}^{-1}(k).
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.