ORPP logo
Image from Google Jackets

Modeling Power Electronics and Interfacing Energy Conversion Systems.

By: Material type: TextTextSeries: New York Academy of Sciences SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2017Edition: 1st edDescription: 1 online resource (344 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119058274
Subject(s): Genre/Form: Additional physical formats: Print version:: Modeling Power Electronics and Interfacing Energy Conversion SystemsDDC classification:
  • 621.31/7
LOC classification:
  • TK7881.15 .M58 2017
Online resources:
Contents:
Intro -- TITLE PAGE -- COPYRIGHT PAGE -- CONTENTS -- FOREWORD -- PREFACE -- CHAPTER 1 INTRODUCTION TO ELECTRICAL ENGINEERING SIMULATION -- 1.1 FUNDAMENTALS OF STATE‐SPACE‐BASED MODELING -- 1.2 EXAMPLE OF MODELING AN ELECTRICAL NETWORK -- 1.3 TRANSFER FUNCTION -- 1.3.1 State Space to Transfer Function Conversion -- 1.4 MODELING AND SIMULATION OF ENERGY SYSTEMS AND POWER ELECTRONICS -- 1.5 SUGGESTED PROBLEMS -- FURTHER READING -- CHAPTER 2 ANALYSIS OF ELECTRICAL CIRCUITS WITH MESH AND NODAL ANALYSIS -- 2.1 INTRODUCTION -- 2.2 SOLUTION OF MATRIX EQUATIONS -- 2.3 LABORATORY PROJECT: MESH AND NODAL ANALYSIS OF ELECTRICAL CIRCUITS WITH SUPERPOSITION THEOREM -- 2.4 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING -- CHAPTER 3 MODELING AND ANALYSIS OF ELECTRICAL CIRCUITS WITH BLOCK DIAGRAMS -- 3.1 INTRODUCTION -- 3.2 LABORATORY PROJECT: TRANSIENT RESPONSE STUDY AND LAPLACE TRANSFORM‐BASED ANALYSIS BLOCK DIAGRAM SIMULATION -- 3.3 COMPARISON WITH PHASOR‐BASED STEADY‐STATE ANALYSIS -- 3.4 FINDING THE EQUIVALENT THÈVENIN -- 3.5 SUGGESTED PROBLEMS -- FURTHER READING -- CHAPTER 4 POWER ELECTRONICS: ELECTRICAL CIRCUIT‐ORIENTED SIMULATION -- 4.1 INTRODUCTION -- 4.2 CASE STUDY: HALF-WAVE RECTIFIER -- 4.3 LABORATORY PROJECT: ELECTRICAL CIRCUIT SIMULATION USING PSIM AND SIMSCAPE POWER SYSTEMS MATLAB ANALYSIS -- 4.4 SUGGESTED PROBLEMS -- FURTHER READING -- CHAPTER 5 DESIGNING POWER ELECTRONIC CONTROL SYSTEMS -- 5.1 INTRODUCTION -- 5.1.1 Control System Design -- 5.1.2 Proportional-Integral Closed-Loop Control -- 5.2 LABORATORY PROJECT: DESIGN OF A DC/DC BOOST CONVERTER CONTROL -- 5.2.1 Ideal Boost Converter -- 5.2.2 Small Signal Model and Deriving the Transfer Function of Boost Converter -- 5.2.3 Control Block Diagram and Transfer Function -- 5.3 DESIGN OF A TYPE III COMPENSATED ERROR AMPLIFIER -- 5.3.1 K Method.
5.3.2 Poles and Zeros Placement in the Type III Amplifier -- 5.4 CONTROLLER DESIGN -- 5.5 PSIM SIMULATION STUDIES FOR THE DC/DC BOOST CONVERTER -- 5.6 BOOST CONVERTER: AVERAGE MODEL -- 5.7 FULL CIRCUIT FOR THE DC/DC BOOST CONVERTER -- 5.8 LABORATORY PROJECT: DESIGN OF A DISCRETE CONTROL IN MATLAB CORUNNING WITH A DC MOTOR MODEL IN Simulink -- 5.9 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING -- CHAPTER 6 INSTRUMENTATION AND CONTROL INTERFACES FOR ENERGY SYSTEMS AND POWER ELECTRONICS -- 6.1 INTRODUCTION -- 6.1.1 Sensors and Transducers for Power Systems Data Acquisition -- 6.2 PASSIVE ELECTRICAL SENSORS -- 6.2.1 Resistive Sensors -- 6.2.2 Capacitive Sensors -- 6.2.3 Inductive Sensors -- 6.3 ELECTRONIC INTERFACE FOR COMPUTATIONAL DATA IN POWER SYSTEMS AND INSTRUMENTATION -- 6.3.1 Operational Amplifiers -- 6.4 ANALOG AMPLIFIERS FOR DATA ACQUISITION AND POWER SYSTEM DRIVING -- 6.4.1 Level Detector or Comparator -- 6.4.2 Standard Differential Amplifier for Instrumentation and Control -- 6.4.3 Optically Isolated Amplifier -- 6.4.4 The V-I Converter of a Single Input and Floating Load -- 6.4.5 Schmitt Trigger Comparator -- 6.4.6 Voltage-Controlled Oscillator (VCO) -- 6.4.7 Phase Shifting -- 6.4.8 Precision Diode, Precision Rectifier, and the Absolute Value Amplifier -- 6.4.9 High-Gain Amplifier with Low-Value Resistors -- 6.4.10 Class B Feedback Push-Pull Amplifiers -- 6.4.11 Triangular Waveform Generator -- 6.5 LABORATORY PROJECT: DESIGN A PWM CONTROLLER WITH ERROR AMPLIFIER -- 6.6 SUGGESTED PROBLEMS -- REFERENCES -- CHAPTER 7 MODELING ELECTRICAL MACHINES -- 7.1 INTRODUCTION TO MODELING ELECTRICAL MACHINES -- 7.2 EQUIVALENT CIRCUIT OF A LINEAR INDUCTION MACHINE CONNECTED TO THE NETWORK -- 7.3 PSIM BLOCK OF A LINEAR IM CONNECTED TO THE DISTRIBUTION NETWORK -- 7.4 PSIM SATURATED IM MODEL CONNECTED TO THE DISTRIBUTION NETWORK.
7.5 DOUBLY FED INDUCTION MACHINE CONNECTED TO THE DISTRIBUTION NETWORK -- 7.6 DC MOTOR POWERING THE SHAFT OF A SELF-EXCITED INDUCTION GENERATOR -- 7.7 MODELING A PERMANENT MAGNET SYNCHRONOUS MACHINE (PMSM) -- 7.8 MODELING A SATURATED TRANSFORMER -- 7.9 LABORATORY PROJECT: TRANSIENT RESPONSE OF A SINGLE‐PHASE NONIDEAL TRANSFORMER FOR THREE TYPES OF POWER SUPPLY-SINUSOIDAL, SQUARE WAVE, AND SPWM -- 7.10 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING -- CHAPTER 8 STAND-ALONE AND GRID-CONNECTED INVERTERS -- 8.1 INTRODUCTION -- 8.2 CONSTANT CURRENT CONTROL -- 8.3 CONSTANT P-Q CONTROL -- 8.4 CONSTANT P-V CONTROL -- 8.5 IEEE 1547 AND ASSOCIATED CONTROLS -- 8.6 P+RESONANT STATIONARY FRAME CONTROL -- 8.7 PHASE‐LOCKED LOOP (PLL) FOR GRID SYNCHRONIZATION -- 8.8 LABORATORY PROJECT: SIMULATION OF A GRID-CONNECTED/STAND-ALONE INVERTER -- 8.9 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING -- CHAPTER 9 MODELING ALTERNATIVE SOURCES OF ENERGY -- 9.1 ELECTRICAL MODELING OF ALTERNATIVE POWER PLANTS -- 9.2 MODELING A PHOTOVOLTAIC POWER PLANT -- 9.3 MODELING AN INDUCTION GENERATOR (IG) -- 9.4 MODELING A SEIG WIND POWER PLANT -- 9.5 MODELING A DFIG WIND POWER PLANT -- 9.6 MODELING A PMSG WIND POWER PLANT -- 9.7 MODELING A FUEL CELL STACK -- 9.8 MODELING A LEAD ACID BATTERY BANK -- 9.9 MODELING AN INTEGRATED POWER PLANT -- 9.10 SUGGESTED PROBLEMS -- REFERENCES -- CHAPTER 10 POWER QUALITY ANALYSIS -- 10.1 INTRODUCTION -- 10.2 FOURIER SERIES -- 10.3 DISCRETE FOURIER TRANSFORM FOR HARMONIC EVALUATION OF ELECTRICAL SIGNALS -- 10.3.1 Practical Implementation Issues of DFT Using FFT -- 10.4 ELECTRICAL POWER AND POWER FACTOR COMPUTATION FOR DISTORTED CONDITIONS -- 10.5 LABORATORY PROJECT: DESIGN OF A DFT-BASED ELECTRICAL POWER EVALUATION FUNCTION IN MATLAB -- 10.6 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING.
CHAPTER 11 FROM PSIM SIMULATION TO HARDWARE IMPLEMENTATION IN DSP -- 11.1 INTRODUCTION -- 11.2 PSIM OVERVIEW -- 11.3 FROM ANALOG CONTROL TO DIGITAL CONTROL -- 11.4 AUTOMATIC CODE GENERATION IN PSIM -- 11.4.1 TI F28335 DSP Peripheral Blocks -- 11.4.2 Adding DSP Peripheral Blocks -- 11.4.3 Defining SCI Blocks for Real‐Time Monitoring and Debugging -- 11.5 PIL SIMULATION WITH PSIM -- 11.6 CONCLUSION -- REFERENCES -- FURTHER READING -- CHAPTER 12 DIGITAL PROCESSING TECHNIQUES APPLIED TO POWER ELECTRONICS -- 12.1 INTRODUCTION -- 12.2 BASIC DIGITAL PROCESSING TECHNIQUES -- 12.2.1 Instantaneous and Discrete Signal Calculations -- 12.2.2 Derivative and Integral Value Calculation -- 12.2.3 Moving Average Filter -- 12.2.4 Laboratory Project: Active Current Calculation -- 12.3 FUNDAMENTAL COMPONENT IDENTIFICATION -- 12.3.1 IIR Filter -- 12.3.2 FIR Filter -- 12.3.3 Laboratory Project: THD Calculation -- 12.4 FORTESCUE'S SEQUENCE COMPONENTS IDENTIFICATION -- 12.4.1 Sequence Components Identification Using IIR Filter -- 12.4.2 Sequence Component Identification Using DCT Filter -- 12.4.3 Laboratory Project: Calculation of Negative- and Zero-Sequence Factors -- 12.5 NATURAL REFERENCE FRAME PLLs -- 12.5.1 Single-Phase PLL -- 12.5.2 Three-Phase PLL -- 12.5.3 Laboratory Project: Single-Phase PLL Implementation -- 12.5.4 Laboratory Project: Fundamental Wave Detector Based on PLL -- 12.6 MPPT TECHNIQUES -- 12.6.1 Perturb and Observe -- 12.6.2 Incremental Conductance -- 12.6.3 Beta Technique -- 12.6.4 Laboratory Project: Implementing the IC Technique -- 12.7 ISLANDING DETECTION -- 12.7.1 Laboratory Project: Passive Islanding Detection Based on IEEE Std. 1547 -- 12.8 SUGGESTED PROBLEMS -- REFERENCES -- INDEX -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- TITLE PAGE -- COPYRIGHT PAGE -- CONTENTS -- FOREWORD -- PREFACE -- CHAPTER 1 INTRODUCTION TO ELECTRICAL ENGINEERING SIMULATION -- 1.1 FUNDAMENTALS OF STATE‐SPACE‐BASED MODELING -- 1.2 EXAMPLE OF MODELING AN ELECTRICAL NETWORK -- 1.3 TRANSFER FUNCTION -- 1.3.1 State Space to Transfer Function Conversion -- 1.4 MODELING AND SIMULATION OF ENERGY SYSTEMS AND POWER ELECTRONICS -- 1.5 SUGGESTED PROBLEMS -- FURTHER READING -- CHAPTER 2 ANALYSIS OF ELECTRICAL CIRCUITS WITH MESH AND NODAL ANALYSIS -- 2.1 INTRODUCTION -- 2.2 SOLUTION OF MATRIX EQUATIONS -- 2.3 LABORATORY PROJECT: MESH AND NODAL ANALYSIS OF ELECTRICAL CIRCUITS WITH SUPERPOSITION THEOREM -- 2.4 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING -- CHAPTER 3 MODELING AND ANALYSIS OF ELECTRICAL CIRCUITS WITH BLOCK DIAGRAMS -- 3.1 INTRODUCTION -- 3.2 LABORATORY PROJECT: TRANSIENT RESPONSE STUDY AND LAPLACE TRANSFORM‐BASED ANALYSIS BLOCK DIAGRAM SIMULATION -- 3.3 COMPARISON WITH PHASOR‐BASED STEADY‐STATE ANALYSIS -- 3.4 FINDING THE EQUIVALENT THÈVENIN -- 3.5 SUGGESTED PROBLEMS -- FURTHER READING -- CHAPTER 4 POWER ELECTRONICS: ELECTRICAL CIRCUIT‐ORIENTED SIMULATION -- 4.1 INTRODUCTION -- 4.2 CASE STUDY: HALF-WAVE RECTIFIER -- 4.3 LABORATORY PROJECT: ELECTRICAL CIRCUIT SIMULATION USING PSIM AND SIMSCAPE POWER SYSTEMS MATLAB ANALYSIS -- 4.4 SUGGESTED PROBLEMS -- FURTHER READING -- CHAPTER 5 DESIGNING POWER ELECTRONIC CONTROL SYSTEMS -- 5.1 INTRODUCTION -- 5.1.1 Control System Design -- 5.1.2 Proportional-Integral Closed-Loop Control -- 5.2 LABORATORY PROJECT: DESIGN OF A DC/DC BOOST CONVERTER CONTROL -- 5.2.1 Ideal Boost Converter -- 5.2.2 Small Signal Model and Deriving the Transfer Function of Boost Converter -- 5.2.3 Control Block Diagram and Transfer Function -- 5.3 DESIGN OF A TYPE III COMPENSATED ERROR AMPLIFIER -- 5.3.1 K Method.

5.3.2 Poles and Zeros Placement in the Type III Amplifier -- 5.4 CONTROLLER DESIGN -- 5.5 PSIM SIMULATION STUDIES FOR THE DC/DC BOOST CONVERTER -- 5.6 BOOST CONVERTER: AVERAGE MODEL -- 5.7 FULL CIRCUIT FOR THE DC/DC BOOST CONVERTER -- 5.8 LABORATORY PROJECT: DESIGN OF A DISCRETE CONTROL IN MATLAB CORUNNING WITH A DC MOTOR MODEL IN Simulink -- 5.9 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING -- CHAPTER 6 INSTRUMENTATION AND CONTROL INTERFACES FOR ENERGY SYSTEMS AND POWER ELECTRONICS -- 6.1 INTRODUCTION -- 6.1.1 Sensors and Transducers for Power Systems Data Acquisition -- 6.2 PASSIVE ELECTRICAL SENSORS -- 6.2.1 Resistive Sensors -- 6.2.2 Capacitive Sensors -- 6.2.3 Inductive Sensors -- 6.3 ELECTRONIC INTERFACE FOR COMPUTATIONAL DATA IN POWER SYSTEMS AND INSTRUMENTATION -- 6.3.1 Operational Amplifiers -- 6.4 ANALOG AMPLIFIERS FOR DATA ACQUISITION AND POWER SYSTEM DRIVING -- 6.4.1 Level Detector or Comparator -- 6.4.2 Standard Differential Amplifier for Instrumentation and Control -- 6.4.3 Optically Isolated Amplifier -- 6.4.4 The V-I Converter of a Single Input and Floating Load -- 6.4.5 Schmitt Trigger Comparator -- 6.4.6 Voltage-Controlled Oscillator (VCO) -- 6.4.7 Phase Shifting -- 6.4.8 Precision Diode, Precision Rectifier, and the Absolute Value Amplifier -- 6.4.9 High-Gain Amplifier with Low-Value Resistors -- 6.4.10 Class B Feedback Push-Pull Amplifiers -- 6.4.11 Triangular Waveform Generator -- 6.5 LABORATORY PROJECT: DESIGN A PWM CONTROLLER WITH ERROR AMPLIFIER -- 6.6 SUGGESTED PROBLEMS -- REFERENCES -- CHAPTER 7 MODELING ELECTRICAL MACHINES -- 7.1 INTRODUCTION TO MODELING ELECTRICAL MACHINES -- 7.2 EQUIVALENT CIRCUIT OF A LINEAR INDUCTION MACHINE CONNECTED TO THE NETWORK -- 7.3 PSIM BLOCK OF A LINEAR IM CONNECTED TO THE DISTRIBUTION NETWORK -- 7.4 PSIM SATURATED IM MODEL CONNECTED TO THE DISTRIBUTION NETWORK.

7.5 DOUBLY FED INDUCTION MACHINE CONNECTED TO THE DISTRIBUTION NETWORK -- 7.6 DC MOTOR POWERING THE SHAFT OF A SELF-EXCITED INDUCTION GENERATOR -- 7.7 MODELING A PERMANENT MAGNET SYNCHRONOUS MACHINE (PMSM) -- 7.8 MODELING A SATURATED TRANSFORMER -- 7.9 LABORATORY PROJECT: TRANSIENT RESPONSE OF A SINGLE‐PHASE NONIDEAL TRANSFORMER FOR THREE TYPES OF POWER SUPPLY-SINUSOIDAL, SQUARE WAVE, AND SPWM -- 7.10 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING -- CHAPTER 8 STAND-ALONE AND GRID-CONNECTED INVERTERS -- 8.1 INTRODUCTION -- 8.2 CONSTANT CURRENT CONTROL -- 8.3 CONSTANT P-Q CONTROL -- 8.4 CONSTANT P-V CONTROL -- 8.5 IEEE 1547 AND ASSOCIATED CONTROLS -- 8.6 P+RESONANT STATIONARY FRAME CONTROL -- 8.7 PHASE‐LOCKED LOOP (PLL) FOR GRID SYNCHRONIZATION -- 8.8 LABORATORY PROJECT: SIMULATION OF A GRID-CONNECTED/STAND-ALONE INVERTER -- 8.9 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING -- CHAPTER 9 MODELING ALTERNATIVE SOURCES OF ENERGY -- 9.1 ELECTRICAL MODELING OF ALTERNATIVE POWER PLANTS -- 9.2 MODELING A PHOTOVOLTAIC POWER PLANT -- 9.3 MODELING AN INDUCTION GENERATOR (IG) -- 9.4 MODELING A SEIG WIND POWER PLANT -- 9.5 MODELING A DFIG WIND POWER PLANT -- 9.6 MODELING A PMSG WIND POWER PLANT -- 9.7 MODELING A FUEL CELL STACK -- 9.8 MODELING A LEAD ACID BATTERY BANK -- 9.9 MODELING AN INTEGRATED POWER PLANT -- 9.10 SUGGESTED PROBLEMS -- REFERENCES -- CHAPTER 10 POWER QUALITY ANALYSIS -- 10.1 INTRODUCTION -- 10.2 FOURIER SERIES -- 10.3 DISCRETE FOURIER TRANSFORM FOR HARMONIC EVALUATION OF ELECTRICAL SIGNALS -- 10.3.1 Practical Implementation Issues of DFT Using FFT -- 10.4 ELECTRICAL POWER AND POWER FACTOR COMPUTATION FOR DISTORTED CONDITIONS -- 10.5 LABORATORY PROJECT: DESIGN OF A DFT-BASED ELECTRICAL POWER EVALUATION FUNCTION IN MATLAB -- 10.6 SUGGESTED PROBLEMS -- REFERENCES -- FURTHER READING.

CHAPTER 11 FROM PSIM SIMULATION TO HARDWARE IMPLEMENTATION IN DSP -- 11.1 INTRODUCTION -- 11.2 PSIM OVERVIEW -- 11.3 FROM ANALOG CONTROL TO DIGITAL CONTROL -- 11.4 AUTOMATIC CODE GENERATION IN PSIM -- 11.4.1 TI F28335 DSP Peripheral Blocks -- 11.4.2 Adding DSP Peripheral Blocks -- 11.4.3 Defining SCI Blocks for Real‐Time Monitoring and Debugging -- 11.5 PIL SIMULATION WITH PSIM -- 11.6 CONCLUSION -- REFERENCES -- FURTHER READING -- CHAPTER 12 DIGITAL PROCESSING TECHNIQUES APPLIED TO POWER ELECTRONICS -- 12.1 INTRODUCTION -- 12.2 BASIC DIGITAL PROCESSING TECHNIQUES -- 12.2.1 Instantaneous and Discrete Signal Calculations -- 12.2.2 Derivative and Integral Value Calculation -- 12.2.3 Moving Average Filter -- 12.2.4 Laboratory Project: Active Current Calculation -- 12.3 FUNDAMENTAL COMPONENT IDENTIFICATION -- 12.3.1 IIR Filter -- 12.3.2 FIR Filter -- 12.3.3 Laboratory Project: THD Calculation -- 12.4 FORTESCUE'S SEQUENCE COMPONENTS IDENTIFICATION -- 12.4.1 Sequence Components Identification Using IIR Filter -- 12.4.2 Sequence Component Identification Using DCT Filter -- 12.4.3 Laboratory Project: Calculation of Negative- and Zero-Sequence Factors -- 12.5 NATURAL REFERENCE FRAME PLLs -- 12.5.1 Single-Phase PLL -- 12.5.2 Three-Phase PLL -- 12.5.3 Laboratory Project: Single-Phase PLL Implementation -- 12.5.4 Laboratory Project: Fundamental Wave Detector Based on PLL -- 12.6 MPPT TECHNIQUES -- 12.6.1 Perturb and Observe -- 12.6.2 Incremental Conductance -- 12.6.3 Beta Technique -- 12.6.4 Laboratory Project: Implementing the IC Technique -- 12.7 ISLANDING DETECTION -- 12.7.1 Laboratory Project: Passive Islanding Detection Based on IEEE Std. 1547 -- 12.8 SUGGESTED PROBLEMS -- REFERENCES -- INDEX -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.