ORPP logo
Image from Google Jackets

Recent Trends In Surface And Colloid Science.

By: Contributor(s): Material type: TextTextSeries: Statistical Science And Interdisciplinary ResearchPublisher: Singapore : World Scientific Publishing Company, 2012Copyright date: ©2012Edition: 1st edDescription: 1 online resource (367 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789814299428
Subject(s): Genre/Form: Additional physical formats: Print version:: Recent Trends In Surface And Colloid ScienceDDC classification:
  • 541.3
LOC classification:
  • QD506.R43 2012
Online resources:
Contents:
Intro -- Contents -- Foreword -- Preface -- 1. Specific Ion Effects in Colloid and Surface Science: A Modified DLVO Approach Werner Kunz and Mathias Bostrom -- 1.1. Introduction -- 1.2. Modified DLVO Theory -- 1.3. Conclusions -- Acknowledgments -- References -- 2. Electrokinetics in a Suspension of Soft Particles Hiroyuki Ohshima -- 2.1. Introduction -- 2.2. Electrophoresis of Soft Particles -- 2.3. Sedimentation Potential -- 2.4. Electrokinetic Flow between Two Parallel Soft Plates -- 2.5. The Physical Meaning of the Softness Parameter -- 2.6. Conclusions and Outlook -- References -- 3. Relative Humidity and Evaporation of a Simple Fragrance Emulsion Stig E. Friberg and Patricia A. Aikens -- 3.1. Introduction -- 3.2. The Concept -- 3.3. The Pertinent Part of the Phase Diagram -- 3.4. Vapor Pressure and Composition -- 3.5. Calculation of the Evaporation Path -- 3.6. Results -- 3.7. Discussion -- 3.8. Conclusion -- References -- 4. Aging and Stability of W/O Emulsions with NaOH in Aqueous Phase Rujuta Thaker, Bina Sengupta and Ranjan Sengupta -- 4.1. Introduction -- 4.2. Materials and Reagents -- 4.3. Experimental -- 4.4. Results and Discussion -- 4.5. Effect of and Cio on emulsion viscosity -- 4.6. Effect of surfactant concentration -- 4.7. Effect of aging -- 4.8. Conclusions -- References -- 5. Energetics of Micelle Formation: Non Agreement between the Enthalpy Change Measured by the Direct Method of Calorimetry and the Indirect Method of van't Hoff Satya P. Moulik and Debolina Mitra -- 5.1. Introduction -- 5.2. Fundamental Considerations -- 5.3. Calorimetry -- 5.4. Results -- 5.5. Discussion -- 5.6. Conclusion -- Acknowledgments -- References -- 6. Unusual Phase Behavior in a Two-Component System Bruno F.B. Silva, Eduardo F. Marques and Ulf Olsson -- 6.1. Introduction -- 6.2. Experimental and modeling details -- 6.3. Results and discussion.
6.3.1. Concentrated side: lamellar-lamellar coexistence and modeling -- 6.3.2. Dilute side -- 6.4. Conclusions -- References -- 7. Mixed Proteins/Surfactants Interfacial Layers as Studied by Drop Shape Analysis and Capillary Pressure Tensiometry V.S. Alahverdjieva, D.O. Grigoriev, A. Javadi, Cs. Kotsmar, J. Kr¨agel, R. Miller, V. Pradines and A.V. Makievski -- 7.1. Introduction -- 7.2. Theoretical Models -- 7.2.1. Thermodynamic Model -- 7.2.2. Adsorption Dynamics Modelling -- 7.2.3. Dilational Rheological Model -- 7.3. Experimental Technique -- 7.3.1. Drop Profile Analysis Tensiometry -- 7.3.2. Bulk Exchange in Single Drops -- 7.3.3. Capillary Pressure Tensiometry -- 7.4. Adsorption Kinetics and Equilibrium Isotherms -- 7.4.1. Dynamic Surface Tension -- 7.4.2. Equilibrium Surface Tension Isotherms -- 7.4.3. Reversibility of Adsorption -- 7.5. Dilational Elasticity and Viscosity -- 7.6. Conclusions -- References -- 8. Factors Affecting Mixed Aggregation Pablo C. Schulz -- 8.1. The Regular Solution Theory of Mixed Micelles -- 8.2. Discussion -- 8.2.1. Factors Affecting ßcore -- 8.2.2. The interaction between π-electrons and water -- 8.3. Factors affecting ßph -- 8.3.1. The Size of Polar Head Groups -- 8.3.2. The Change in the Structure of the Polar Layer -- 8.4. Conclusions and Outlook -- References -- 9. Micellization Characteristics of Sodium Dioctylsulfosuccinate: An Overview S. Chanda, O.G. Singh and K. Ismail -- 9.1. Introduction -- 9.2. Experimental -- 9.3. Results and Discussion -- 9.3.1. Counter ion binding constant -- 9.3.2. Polarity of the micellar interface using pyrene probe -- 9.3.3. Aggregation Number -- 9.3.4. Polarity of the micellar interface using pyrenecarboxaldehyde probe -- 9.3.5. Polarity of the micellar interface using Reichardt's dye probe -- 9.3.6. Phase behaviour of AOT - water system and shape of AOT micelle.
9.3.7. Change of cmc of AOT in the presence of sodium salicylate -- 9.4. Conclusions -- Acknowledgments -- References -- 10. Phase Separation Study of Surface-Active Drug Promazine Hydrochloride in Absence and Presence of Organic Additives Kabir-ud-Din, Mohammed D.A. Al Ahmadi, Andleeb Z. Naqvi and Mohd. Akram -- 10.1. Introduction -- 10.2. Materials -- 10.3. Methods -- 10.3.1. Cloud Point (CP) Measurements -- 10.3.2. Dye Solubilization Measurements -- 10.4. Results and Discussion -- 10.5. Conclusions -- References -- 11. Effect of Urea on Surfactant Aggregates: A Comprehensive Review Silvia M.B. Souza, E.B. Alvarez and Mario J. Politi -- 11.1. Introduction -- 11.2. Liquid Water -- 11.3. Aqueous Solutions -- 11.4. Monolayers -- 11.5. Micelles -- 11.6. Reversed Micelles and Microemulsions -- 11.7. Vesicles -- 11.8. Conclusions -- References -- 12. Specific Ion-Pair/Hydration Model for the Sphere-To-Rod Transitions of Aqueous Cationic Micelles. The Evidence from Chemical Trapping Laurence S. Romsted -- 12.1. Introduction -- 12.2. Balance-of-forces Controlling Micelle Size and Shape -- 12.2.1. Balance-of-forces/Free Energy of Micelle Formation -- 12.2.2. The Driving Force, The Hydrophobic Effect -- 12.2.3. The Hydrophobic Effect Drives Micellar Aggregation -- 12.2.4. The Balancing Force: the Traditional View -- 12.2.5. The Relationship of Surfactant and Aggregate Structure: The Packing Parameter -- 12.2.6. The Balancing Effect: The Specific Ion-Pair / Hydration Model -- 12.3. The Chemical Trapping Method and Experimental Protocols-In Brief -- 12.3.1. Method -- 12.3.2. Experimental Protocols -- 12.4. Ion Specific Effects on cmcs and Sphere-to-Rod Transition Concentrations -- 12.5. Sphere-to-Rod Transitions: Chemical Trapping Results -- 12.5.1. Gemini Micelles -- 12.5.2. Substituent Effects with Aromatic Counterions.
12.5.3. Single Chain Surfactants: Cetyltrimethylammonium Chloride, CTACl -- 12.5.4. Single Chain Surfactants: Cetyltrimethylammonium Bromide (CTABr) and Cetyltri-n-propylammonium Bromide (CTPABr) -- 12.6. Discussion -- 12.7. Conclusions -- Acknowledgments -- References -- 13. Biocatalytic Studies in Microemulsions and Related Systems Aristotelis Xenakis -- 13.1. Introduction -- 13.2. Enzymes in Microemulsions -- 13.3. Catalytic Studies in Microemulsion-based Organogels (MBGs) -- 13.4. Catalytic Studies in Microemulsion-like Surfactant-free Systems -- 13.5. Catalytic Studies in MBGs in scCO2 -- 13.6. Conclusions and Outlook -- References -- 14. Colloidal Dispersions for Drug Delivery Syamasri Gupta -- 14.1. Introduction -- 14.1.1. Liposomes -- 14.1.2. Niosome -- 14.1.3. Microspheres and Nanoparticles -- 14.1.4. Microemulsion -- 14.1.5. Organogel, Hydrogel and other Colloidal Dispersions -- 14.2. Future Perspective -- Acknowledgment -- References -- 15. Nanoscale Self-Organization of Polyampholytes H.B. Bohidar and Amarnath Gupta -- 15.1. Introduction -- 15.2. Experimental Observations -- 15.3. Simulation Studies -- 15.4. Results and Discussions -- 15.5. Conclusions -- Acknowledgments: -- References -- 16. Polymer-Modified Microemulsions as a New Type of Template for the Nanoparticle Formation Joachim Koetz, Carine Note, Jennifa Baier and Stefanie Lutter -- 16.1. Introduction -- 16.2. Experimental -- 16.2.1. Materials -- 16.2.2. Methods -- 16.2.3. Synthesis of the Nanoparticles -- 16.2.4. Characterisation of the Nanoparticles -- 16.3. Results -- 16.3.1. Characterisation of the Polymer-modified Microemulsion Template Phases -- 16.3.1.1. SB/water/heptanol system -- 16.3.1.2. SDS/water/xylene-pentanol system -- 16.3.2. BaSO4 Nanoparticle Formation in the Microemulsion Template Phase -- 16.3.2.1. Nanoparticle Formation in the L2 Phase.
16.3.2.2. Nanoparticle Formation in the Bicontinuous Phase -- 16.3.3. Redispersed BaSO4 Nanoparticles -- 16.3.3.1. Nanoparticles Redispersed from the L2 Phase -- 16.3.3.2. Nanoparticles Redispersed from the Bicontinuous Phase -- 16.4. Conclusions -- References -- 17. Maximizing the Uptake of Nickel Oxide Nanoparticles by AOT (W/O) Microemulsions Nashaat N. Nassar and Maen M. Husein -- 17.1. Introduction -- 17.2. Experimental Section -- 17.2.1. Chemicals -- 17.2.2. Nanoparticle Synthesis -- 17.3. Results and Discussion -- 17.3.1. Stability of the Colloidal Nanoparticles -- 17.3.2. Effect of AOT Concentration -- 17.3.3. Effect of Water to AOT Mole Ratio, R -- 17.3.4. Effect of Concentration of Ni(NO3)2 Precursor -- 17.4. Conclusions -- Acknowledgments -- References -- 18. A Brief Overview on Synthesis and Size Dependent Photocatalytic Behaviour of Luminescent Semiconductor Quantum Dots A. Priyam, S. Ghosh, A. Datta, A. Chatterjee and A. Saha -- 18.1. Introduction -- 18.2. Experimental -- 18.2.1. Synthesis of Thiol-capped CdS and CdTe Quantum Dots -- 18.2.2. Dendrimer-mediated Synthesis of CdTe Quantum Dots -- 18.2.3. Determination of the Average Particle Size and Size Distribution -- 18.3. Determination of PLQE -- 18.4. Results and Discussions -- 18.4.1. Supersaturation Driven Tailoring of Size Distribution and PLQE -- 18.4.2. Size Distribution -- 18.4.3. Photoluminescence Quantum Efficiency -- 18.5. Synthesis of CdTe QDs in Dendrimer Matrix -- 18.5.1. Effect of variation in Cd2+: Te2- Molar Ratio -- 18.5.2. pH Effect -- 18.5.3. Temperature Effect -- 18.6. Size Dependent Luminescence Quenching of CdS QDs and Photocatalytic Degradation of Nitroaromatics -- 18.7. Concluding Remarks -- Acknowledgements -- References.
19. Dramatic Enhancement in the Cation Sensing Efficiency in Anionic Micelles: A Simple and Efficient Approach Towards Improving the Sensor Efficiency Paramita Das, Deboleena Sarkar and Nitin Chattopadhyay.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Foreword -- Preface -- 1. Specific Ion Effects in Colloid and Surface Science: A Modified DLVO Approach Werner Kunz and Mathias Bostrom -- 1.1. Introduction -- 1.2. Modified DLVO Theory -- 1.3. Conclusions -- Acknowledgments -- References -- 2. Electrokinetics in a Suspension of Soft Particles Hiroyuki Ohshima -- 2.1. Introduction -- 2.2. Electrophoresis of Soft Particles -- 2.3. Sedimentation Potential -- 2.4. Electrokinetic Flow between Two Parallel Soft Plates -- 2.5. The Physical Meaning of the Softness Parameter -- 2.6. Conclusions and Outlook -- References -- 3. Relative Humidity and Evaporation of a Simple Fragrance Emulsion Stig E. Friberg and Patricia A. Aikens -- 3.1. Introduction -- 3.2. The Concept -- 3.3. The Pertinent Part of the Phase Diagram -- 3.4. Vapor Pressure and Composition -- 3.5. Calculation of the Evaporation Path -- 3.6. Results -- 3.7. Discussion -- 3.8. Conclusion -- References -- 4. Aging and Stability of W/O Emulsions with NaOH in Aqueous Phase Rujuta Thaker, Bina Sengupta and Ranjan Sengupta -- 4.1. Introduction -- 4.2. Materials and Reagents -- 4.3. Experimental -- 4.4. Results and Discussion -- 4.5. Effect of and Cio on emulsion viscosity -- 4.6. Effect of surfactant concentration -- 4.7. Effect of aging -- 4.8. Conclusions -- References -- 5. Energetics of Micelle Formation: Non Agreement between the Enthalpy Change Measured by the Direct Method of Calorimetry and the Indirect Method of van't Hoff Satya P. Moulik and Debolina Mitra -- 5.1. Introduction -- 5.2. Fundamental Considerations -- 5.3. Calorimetry -- 5.4. Results -- 5.5. Discussion -- 5.6. Conclusion -- Acknowledgments -- References -- 6. Unusual Phase Behavior in a Two-Component System Bruno F.B. Silva, Eduardo F. Marques and Ulf Olsson -- 6.1. Introduction -- 6.2. Experimental and modeling details -- 6.3. Results and discussion.

6.3.1. Concentrated side: lamellar-lamellar coexistence and modeling -- 6.3.2. Dilute side -- 6.4. Conclusions -- References -- 7. Mixed Proteins/Surfactants Interfacial Layers as Studied by Drop Shape Analysis and Capillary Pressure Tensiometry V.S. Alahverdjieva, D.O. Grigoriev, A. Javadi, Cs. Kotsmar, J. Kr¨agel, R. Miller, V. Pradines and A.V. Makievski -- 7.1. Introduction -- 7.2. Theoretical Models -- 7.2.1. Thermodynamic Model -- 7.2.2. Adsorption Dynamics Modelling -- 7.2.3. Dilational Rheological Model -- 7.3. Experimental Technique -- 7.3.1. Drop Profile Analysis Tensiometry -- 7.3.2. Bulk Exchange in Single Drops -- 7.3.3. Capillary Pressure Tensiometry -- 7.4. Adsorption Kinetics and Equilibrium Isotherms -- 7.4.1. Dynamic Surface Tension -- 7.4.2. Equilibrium Surface Tension Isotherms -- 7.4.3. Reversibility of Adsorption -- 7.5. Dilational Elasticity and Viscosity -- 7.6. Conclusions -- References -- 8. Factors Affecting Mixed Aggregation Pablo C. Schulz -- 8.1. The Regular Solution Theory of Mixed Micelles -- 8.2. Discussion -- 8.2.1. Factors Affecting ßcore -- 8.2.2. The interaction between π-electrons and water -- 8.3. Factors affecting ßph -- 8.3.1. The Size of Polar Head Groups -- 8.3.2. The Change in the Structure of the Polar Layer -- 8.4. Conclusions and Outlook -- References -- 9. Micellization Characteristics of Sodium Dioctylsulfosuccinate: An Overview S. Chanda, O.G. Singh and K. Ismail -- 9.1. Introduction -- 9.2. Experimental -- 9.3. Results and Discussion -- 9.3.1. Counter ion binding constant -- 9.3.2. Polarity of the micellar interface using pyrene probe -- 9.3.3. Aggregation Number -- 9.3.4. Polarity of the micellar interface using pyrenecarboxaldehyde probe -- 9.3.5. Polarity of the micellar interface using Reichardt's dye probe -- 9.3.6. Phase behaviour of AOT - water system and shape of AOT micelle.

9.3.7. Change of cmc of AOT in the presence of sodium salicylate -- 9.4. Conclusions -- Acknowledgments -- References -- 10. Phase Separation Study of Surface-Active Drug Promazine Hydrochloride in Absence and Presence of Organic Additives Kabir-ud-Din, Mohammed D.A. Al Ahmadi, Andleeb Z. Naqvi and Mohd. Akram -- 10.1. Introduction -- 10.2. Materials -- 10.3. Methods -- 10.3.1. Cloud Point (CP) Measurements -- 10.3.2. Dye Solubilization Measurements -- 10.4. Results and Discussion -- 10.5. Conclusions -- References -- 11. Effect of Urea on Surfactant Aggregates: A Comprehensive Review Silvia M.B. Souza, E.B. Alvarez and Mario J. Politi -- 11.1. Introduction -- 11.2. Liquid Water -- 11.3. Aqueous Solutions -- 11.4. Monolayers -- 11.5. Micelles -- 11.6. Reversed Micelles and Microemulsions -- 11.7. Vesicles -- 11.8. Conclusions -- References -- 12. Specific Ion-Pair/Hydration Model for the Sphere-To-Rod Transitions of Aqueous Cationic Micelles. The Evidence from Chemical Trapping Laurence S. Romsted -- 12.1. Introduction -- 12.2. Balance-of-forces Controlling Micelle Size and Shape -- 12.2.1. Balance-of-forces/Free Energy of Micelle Formation -- 12.2.2. The Driving Force, The Hydrophobic Effect -- 12.2.3. The Hydrophobic Effect Drives Micellar Aggregation -- 12.2.4. The Balancing Force: the Traditional View -- 12.2.5. The Relationship of Surfactant and Aggregate Structure: The Packing Parameter -- 12.2.6. The Balancing Effect: The Specific Ion-Pair / Hydration Model -- 12.3. The Chemical Trapping Method and Experimental Protocols-In Brief -- 12.3.1. Method -- 12.3.2. Experimental Protocols -- 12.4. Ion Specific Effects on cmcs and Sphere-to-Rod Transition Concentrations -- 12.5. Sphere-to-Rod Transitions: Chemical Trapping Results -- 12.5.1. Gemini Micelles -- 12.5.2. Substituent Effects with Aromatic Counterions.

12.5.3. Single Chain Surfactants: Cetyltrimethylammonium Chloride, CTACl -- 12.5.4. Single Chain Surfactants: Cetyltrimethylammonium Bromide (CTABr) and Cetyltri-n-propylammonium Bromide (CTPABr) -- 12.6. Discussion -- 12.7. Conclusions -- Acknowledgments -- References -- 13. Biocatalytic Studies in Microemulsions and Related Systems Aristotelis Xenakis -- 13.1. Introduction -- 13.2. Enzymes in Microemulsions -- 13.3. Catalytic Studies in Microemulsion-based Organogels (MBGs) -- 13.4. Catalytic Studies in Microemulsion-like Surfactant-free Systems -- 13.5. Catalytic Studies in MBGs in scCO2 -- 13.6. Conclusions and Outlook -- References -- 14. Colloidal Dispersions for Drug Delivery Syamasri Gupta -- 14.1. Introduction -- 14.1.1. Liposomes -- 14.1.2. Niosome -- 14.1.3. Microspheres and Nanoparticles -- 14.1.4. Microemulsion -- 14.1.5. Organogel, Hydrogel and other Colloidal Dispersions -- 14.2. Future Perspective -- Acknowledgment -- References -- 15. Nanoscale Self-Organization of Polyampholytes H.B. Bohidar and Amarnath Gupta -- 15.1. Introduction -- 15.2. Experimental Observations -- 15.3. Simulation Studies -- 15.4. Results and Discussions -- 15.5. Conclusions -- Acknowledgments: -- References -- 16. Polymer-Modified Microemulsions as a New Type of Template for the Nanoparticle Formation Joachim Koetz, Carine Note, Jennifa Baier and Stefanie Lutter -- 16.1. Introduction -- 16.2. Experimental -- 16.2.1. Materials -- 16.2.2. Methods -- 16.2.3. Synthesis of the Nanoparticles -- 16.2.4. Characterisation of the Nanoparticles -- 16.3. Results -- 16.3.1. Characterisation of the Polymer-modified Microemulsion Template Phases -- 16.3.1.1. SB/water/heptanol system -- 16.3.1.2. SDS/water/xylene-pentanol system -- 16.3.2. BaSO4 Nanoparticle Formation in the Microemulsion Template Phase -- 16.3.2.1. Nanoparticle Formation in the L2 Phase.

16.3.2.2. Nanoparticle Formation in the Bicontinuous Phase -- 16.3.3. Redispersed BaSO4 Nanoparticles -- 16.3.3.1. Nanoparticles Redispersed from the L2 Phase -- 16.3.3.2. Nanoparticles Redispersed from the Bicontinuous Phase -- 16.4. Conclusions -- References -- 17. Maximizing the Uptake of Nickel Oxide Nanoparticles by AOT (W/O) Microemulsions Nashaat N. Nassar and Maen M. Husein -- 17.1. Introduction -- 17.2. Experimental Section -- 17.2.1. Chemicals -- 17.2.2. Nanoparticle Synthesis -- 17.3. Results and Discussion -- 17.3.1. Stability of the Colloidal Nanoparticles -- 17.3.2. Effect of AOT Concentration -- 17.3.3. Effect of Water to AOT Mole Ratio, R -- 17.3.4. Effect of Concentration of Ni(NO3)2 Precursor -- 17.4. Conclusions -- Acknowledgments -- References -- 18. A Brief Overview on Synthesis and Size Dependent Photocatalytic Behaviour of Luminescent Semiconductor Quantum Dots A. Priyam, S. Ghosh, A. Datta, A. Chatterjee and A. Saha -- 18.1. Introduction -- 18.2. Experimental -- 18.2.1. Synthesis of Thiol-capped CdS and CdTe Quantum Dots -- 18.2.2. Dendrimer-mediated Synthesis of CdTe Quantum Dots -- 18.2.3. Determination of the Average Particle Size and Size Distribution -- 18.3. Determination of PLQE -- 18.4. Results and Discussions -- 18.4.1. Supersaturation Driven Tailoring of Size Distribution and PLQE -- 18.4.2. Size Distribution -- 18.4.3. Photoluminescence Quantum Efficiency -- 18.5. Synthesis of CdTe QDs in Dendrimer Matrix -- 18.5.1. Effect of variation in Cd2+: Te2- Molar Ratio -- 18.5.2. pH Effect -- 18.5.3. Temperature Effect -- 18.6. Size Dependent Luminescence Quenching of CdS QDs and Photocatalytic Degradation of Nitroaromatics -- 18.7. Concluding Remarks -- Acknowledgements -- References.

19. Dramatic Enhancement in the Cation Sensing Efficiency in Anionic Micelles: A Simple and Efficient Approach Towards Improving the Sensor Efficiency Paramita Das, Deboleena Sarkar and Nitin Chattopadhyay.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.