Batteries : Present and Future Energy Storage Challenges.
Material type:
- text
- computer
- online resource
- 9783527827305
- QC603 .B388 2020
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Section I Introduction -- 1 The Role of Batteries for the Successful Transition to Renewable Energy Sources -- 1 The Need for Transitioning to Renewable Energy Sources -- 2 Energy Storage as Key Enabler -- 2.1 Stationary Energy Storage -- 2.2 Energy Storage Technologies for Transportation -- 2.3 Storage Technologies for Portable Electronic Devices -- 3 The Variety of Battery Chemistries and Technologies -- References -- 2 Fundamental Principles of Battery Electrochemistry -- 1 Introduction -- 2 Main Battery Components -- 2.1 Electrodes -- 2.2 Electrolyte -- 3 Voltage, Capacity, and Energy -- 3.1 Theoretical Cell Voltage -- 3.2 Theoretical Capacity -- 3.3 Energy Storage and Delivery -- 4 Current and Power -- 4.1 Kinetics and Overvoltage -- 4.2 Ohmic Polarization -- 4.3 Kinetic Polarization -- 4.4 Mass Transfer Polarization -- 5 Practical Operating Parameters -- 5.1 Coulombic Efficiency and Energy Efficiency (Round-Trip Efficiency) -- 5.2 Capacity Retention and Cycle Life -- 5.3 Rate Capability -- 6 Main Classes of Batteries and Alternative Electrochemical Power Sources -- 6.1 Primary Batteries -- 6.2 Secondary Batteries (Accumulators) -- 6.3 Fuel Cells -- References -- Section II Presently Employed Battery Technologies 49 -- 3 Lead-Acid - Still the Battery Technology with the Largest Sales -- 1 Introduction and History -- 2 Fundamentals of the Lead-Acid Accumulator -- 2.1 Operating Principle -- 2.2 Electrode Potentials in Equilibrium -- 2.3 Side Reactions -- 3 Behavior of the Lead-Acid Accumulator During Current Flow -- 3.1 Overpotentials in Lead-Acid Accumulators -- 3.2 Mathematic Concept to Describe the Electron Transfer Reaction -- 3.3 Inhibition of the Electron Transfer Reaction During Charge -- 3.4 Current/Voltage Characteristics During Overcharge.
4 Aging Mechanisms -- 4.1 Sulfation of Negative Active Mass -- 5 Acid Stratification -- 6 Battery Design -- 6.1 Types of Electrodes -- 6.2 Valve-Regulated Lead-Acid Batteries -- 7 Discharge Characteristic -- 8 Charging Algorithms -- 8.1 IUIa Charging Algorithms -- 9 Temperature Effects -- 9.1 Theoretical Description of the Heat Sources and Sinks -- 10 New Development Trends for Advanced Lead-Acid Batteries -- 10.1 Thin Plate Pure Lead Technology -- 10.2 Enhanced Lead-Carbon Batteries -- 10.3 Bipolar Lead-Acid Batteries -- References -- 4 Ni/Cd and Ni-MH - The Transition to "Charge Carrier"-Based Batteries -- 1 Introduction to Ni/Cd and Ni-MH Batteries -- 2 Basic Structure of Ni-MH Battery -- 3 Electrochemistry of Ni-MH Battery -- 4 Positive Electrode Materials of Ni-MH Batteries -- 4.1 Crystal Structure -- 4.2 Electrochemical Characteristics -- 5 Negative Electrode Materials of Ni-MH Batteries -- 5.1 Electrochemical Reaction Thermodynamics of Hydrogen Storage Electrode Alloys -- 5.2 Electrochemical Reaction Kinetics of Hydrogen Storage Alloys -- 5.3 Requirements for Hydrogen Storage Electrode Alloys -- 5.4 Classification of Hydrogen Storage Electrode Alloys -- 6 State-of-the-Art of Ni-MH Battery -- 6.1 High Power Ni-MH Battery -- 6.2 High-Capacity Ni-MH Battery -- 6.3 High-/Low-Temperature Ni-MH Battery -- 6.4 Low Self-Discharge Ni-MH Battery -- 7 Summary -- References -- 5 Brief Survey on the Historical Development of LIBs -- 1 Introduction -- 2 Aqueous Electrolyte System -- 3 Nonaqueous Electrolyte System -- 4 Insertion/Extraction of Lithium Ion -- 5 Success of Sony -- 5.1 Patent Issue -- 5.2 Cathode Material -- 5.3 Anode Material -- 5.4 Electrolyte -- 5.5 Separator -- 5.6 Cathode Collector and Conductive Material -- 5.7 Anode Collector -- 5.8 Anode Can -- 5.9 Mixing and Coating Technology -- 5.10 Assembly of Lithium-Ion Cells -- 5.11 Pack.
6 Conclusion -- References -- 6 Present LIB Chemistries -- 1 General Introduction -- 2 Positive Electrodes -- 2.1 Basic Principles -- 2.2 LiCoO2 Family -- 2.3 LiNiO2 Family -- 2.4 LiMn2O4 Family -- 2.5 LiFePO4 Family -- 3 Negative Electrodes -- 3.1 Commercialized Carbons in LIBs -- 3.2 Graphitized Carbons -- 3.3 Nongraphitic Carbons -- 3.4 Hard Carbons (Nongraphitizable Carbons) -- 3.5 High-Potential Negative Electrode -- 3.6 Silicon-Based Materials -- 4 Electrolytes -- 4.1 Introduction - General Concept of Electrolyte Designing in Practical LIBs -- 4.2 Classification of LIB Electrolytes -- 4.3 Organic Solvent Electrolytes -- 4.4 Polymeric Solid and Gel Electrolytes -- 4.5 Inorganic Solid Electrolytes -- 4.6 Ionic Liquid-Based Electrolytes -- 4.7 New Trends -- References -- 7 Anticipated Progress in the Near- to Mid-Term Future of LIBs -- 1 Cathode -- 1.1 Summary -- 1.2 Layered Structure -- 1.3 Spinel Structure -- 1.4 Olivine Structure -- 1.5 Performance Improvements -- 2 Anode -- 2.1 Summary -- 2.2 Lithium Metal -- 2.3 Intercalation-Based Anode -- 2.4 Alloying-Based Anode -- 2.5 Conversion-Based Anode -- 3 Electrolyte -- 3.1 Summary -- 3.2 Organic Liquid Electrolyte -- 3.3 Gel Polymer Electrolyte -- 4 Separator -- 4.1 Summary -- 4.2 Detailed Requirements of Separator -- 4.3 Polyolefin Separators -- 4.4 PVdF Separators -- 4.5 Inorganic Composite Separators -- 5 Outlook -- References -- 8 Safety Considerations with Lithium-Ion Batteries -- 1 Introduction -- 2 Material Influence on Risks -- 2.1 Cathode Materials -- 2.2 Anode Materials -- 2.3 Electrolytes -- 3 Risk Classes -- 3.1 Chemical Risks -- 3.2 Thermal Risks -- 3.3 Kinetical Risks -- 3.4 Electrical Risks -- 4 Triggering of Risks -- 4.1 Triggers External to the Cell -- 4.2 Internal Cell Triggers -- 4.3 Propagation of Cell Failures -- 4.4 Safety Testing -- 5 Handling of Risk Events.
5.1 General Considerations -- 5.2 Fire Extinction -- 5.3 Fire-Extinguishing Agents -- 6 Summary and Outlook -- References -- 9 Recycling of Lithium-Ion Batteries -- 1 Introduction -- 2 Recycling Technologies/Processes -- 2.1 Thermal Pretreatment -- 2.2 Mechanical Treatment -- 2.3 Pyrometallurgical Treatment -- 2.4 Hydrometallurgical Treatment -- 2.5 Direct Recycling -- 2.6 Current Recycling Activities in Europe -- 3 Assessment of Battery Recycling Processes -- 3.1 Techno-Economic Performance of the Different Recycling Processes -- 3.2 Environmental Performance of the Different Recycling Processes -- 4 Challenges and Potentials -- 4.1 Technological Challenges -- 4.2 Economic Viability -- 4.3 Environmental Considerations -- 4.4 Further Aspects -- 5 Conclusion -- References -- 10 Vanadium Redox Flow Batteries -- 1 Introduction -- 2 Vanadium Electrolytes -- 2.1 Synthesis of Vanadium Electrolytes -- 2.2 Concentration and Chemical Stability of Vanadium Electrolytes -- 2.3 Ionic Conductivity and Viscosity of Electrolyte -- 2.4 Mixed-Acid Vanadium Electrolytes -- 2.5 Additives for Vanadium Electrolytes -- 2.6 State-of-Charge (SOC) -- 3 Membranes and Transport of Species -- 3.1 Function of the Membranes -- 3.2 Characterization Methods of Membranes -- 3.3 Membrane Types -- 4 Electrode Materials -- 4.1 Electrode Reactions -- 4.2 Carbon Paper Electrodes and "Zero-Gap" Concept of Cell Configuration -- 4.3 Degradation Study of Carbon Electrodes -- 5 Conclusions -- References -- 11 Redox Flow - Zn-Br -- 1 Overview of Zn-Br Batteries -- 2 Battery Components -- 2.1 Membrane -- 2.2 Electrolyte -- 2.3 Positive Electrode -- 2.4 Negative Electrode -- 3 Battery Design -- 3.1 Stack Design -- 3.2 Module and System Design -- 4 Battery Management -- 4.1 Operation Mode -- 4.2 Heat and pH Management -- 5 Summary -- References -- 12 The Sodium/Nickel Chloride Battery.
1 General Characteristics -- 2 Description of the Electrochemical Systems -- 2.1 Main Electrochemical Reactions -- 2.2 Overcharge -- 2.3 Overdischarge -- 3 Cell Design and Performance Characteristics -- 3.1 Solid Electrolyte Description -- 3.2 Performance Characteristics -- 3.3 Discharge at Different Rates -- 3.4 Open Circuit Voltage -- 3.5 Peak Pulse Power Test -- 4 Battery Design and Performance Characteristics -- 4.1 TL Series -- 4.2 Safety -- 5 Series Production Technology -- 6 Market Overview and Application -- 7 Transport of Cells and Batteries -- 7.1 Packaging -- 7.2 Training -- 7.3 Marking -- 7.4 Labeling -- 13 High-Temperature Battery Technologies: Na-S -- 1 Introduction -- 2 High-Temperature Sodium-Sulfur Systems -- 2.1 Basics of Sodium-Sulfur Batteries -- 2.2 Advantages of Sodium-Sulfur Batteries -- 2.3 Challenges to Overcome -- 2.4 Solid Electrolytes: Alternatives -- 3 Intermediate-Temperature Sodium-Sulfur Systems -- 4 Low-Temperature Sodium-Sulfur Systems -- 5 Sodium-Sulfur Technology Implementation in Industry -- 6 Conclusions -- 14 Solid-State Batteries with Polymer Electrolytes -- 1 Introduction -- 2 Lithium-Ion Batteries and "Soft" Gel Electrolytes -- 3 Lithium Metal Batteries and SPEs -- 3.1 State of the art -- 3.2 The Lithium Metal Anode -- 3.3 Approaches Developed -- 4 Perspectives -- 4.1 Polycarbonate Solid Polymer Electrolytes -- 4.2 Hybrid Solid-State Polymer Electrolytes -- 4.3 Block Copolymers -- 4.4 Liquid Crystal Electrolytes -- 4.5 Oligomeric Anions, Polyanions, and Single-Ion Conductors -- 5 Conclusions -- Section III Potential Candidates for the Future Energy Storage 457 -- 15 Solid-State Batteries with Inorganic Electrolytes -- 1 Introduction -- 1.1 Research Background -- 1.2 Energy Density and Safety Issue of Li Batteries -- 1.3 Differences between Solid and Liquid Electrolyte Batteries -- 1.4 Theoretical Models.
1.5 Li Metal and Li Ion Secondary Batteries.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.