ORPP logo
Image from Google Jackets

Carbon Nanofibers : Fundamentals and Applications.

By: Contributor(s): Material type: TextTextSeries: Advances in Nanotechnology and Applications SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2021Copyright date: ©2021Edition: 1st edDescription: 1 online resource (448 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119769132
Subject(s): Genre/Form: Additional physical formats: Print version:: Carbon NanofibersDDC classification:
  • 620.193
LOC classification:
  • TA455.C3 .C373 2021
Online resources:
Contents:
Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Foreword -- Preface -- 1 An Introduction to Carbon Nanofiber -- 1.1 Introduction -- 1.1.1 History of Carbon Fiber -- 1.1.2 What Is a Carbon Fiber? -- 1.1.3 Structures of Carbon Fibers -- 1.1.4 Synthesis of Carbon Fibers -- 1.1.4.1 Carbon Fibers from PAN -- 1.1.5 Properties of Carbon Fibers -- 1.2 Properties of Carbon Nanofiber and How It Differs from Carbon Nanotube -- 1.2.1 History of CNF -- 1.2.2 Role of Surface States in Controlling the Properties of CNFs -- 1.3 Synthesis of Carbon Nanofiber (CNF) -- 1.3.1 Chemical Vapor Deposition (CVD) Method -- 1.3.2 Precursors for CNF -- 1.3.3 Use of Catalyst in the Synthesis of CNF -- 1.3.4 Selection of Variable Parameters for Growth of CNF -- 1.3.5 Epitaxial Growth of Aligned CNF -- 1.3.6 Mechanism of CNF Synthesis -- 1.4 Properties of CNF and Its Composites -- 1.5 Applications of CNF -- 1.6 Health Hazards of CNF -- 1.7 Summary -- References -- 2 Biogenic Carbon Nanofibers -- 2.1 Introduction -- 2.2 Plants as Source of Precursor for CNF Synthesis -- 2.2.1 Plant Parts -- 2.2.1.1 Fibrous Plant Material Used for Synthesizing CNF -- 2.2.1.2 Characterization of CNF Obtained by Pyrolysis of Plant Seeds -- 2.2.2 Plant Metabolites -- 2.2.2.1 Characterization of CNF Obtained by Pyrolysis of Plant Metabolites -- 2.3 CNF Derived from Parts of Different Plants and Their Applications -- 2.3.1 Hydrogen Storage in CNF -- 2.3.2 Removal of Heavy Metals by CNF -- 2.3.3 Microwave Absorption Capacity of CNF -- 2.3.4 CNF as Electrocatalysts for Microbial Energy Harvesting -- 2.3.5 CNF as Regenerative Medicine -- 2.3.6 CNF as Deodorizer -- 2.3.7 CNF Composites for Strong and Lightweight Material -- 2.3.8 Biogenic CNF as Supercapacitor -- 2.3.9 Plant-Derived CNM for Use in Coatings.
2.4 Comparative Structure of Chemically and Biogenically Synthesized CNF -- 2.4.1 CNF Synthesized from Chemical Precursors -- 2.4.2 CNF Synthesized from Plant Parts or Plant Metabolites as Precursors -- 2.5 Concluding Remarks -- References -- 3 Role of Nanocatalysts in Synthesis of Carbon Nanofiber -- 3.1 Introduction -- 3.2 Nanocatalysts -- 3.2.1 Concept of Nanocatalysis -- 3.2.2 Metallic Nanoparticles (NP) as Catalyst -- 3.2.3 Types of Nanometals as Catalyst -- 3.2.3.1 Nanometal Colloids as Catalysts -- 3.2.3.2 Nanoclusters as Catalysts -- 3.2.3.3 Nanoparticles as Catalysts -- 3.2.3.4 Nanopowder as Catalysts -- 3.3 Methods for the Preparation of Nanoparticles -- 3.3.1 Hydrothermal Method of Metal Nanoparticles -- 3.3.2 Microwave-Irradiated Synthesis of Metal Nanoparticles -- 3.3.3 Dendrimer-Assisted Synthesis of Metal Nanoparticles -- 3.3.4 Reverse Micelle Method of Metal Nanoparticles -- 3.3.5 Co-Precipitation Method of Metal Nanoparticles -- 3.3.6 Biogenic Synthesis (Green Synthesis) Method of Metal Nanoparticles -- 3.4 Role of Nanocatalyst in the Production of CNF -- 3.5 Different Types of CNF -- 3.6 Synthesis of Carbon Nanofiber (CNF) Using Nanocatalysts -- 3.6.1 Laser Ablation Method -- 3.6.2 Chemical Vapor Deposition (CVD) -- 3.6.3 Self-Propagating High-Temperature Synthesis (SHS) or Combustion Synthesis (CS) -- 3.6.4 Floating Catalyst Method -- 3.6.5 Electrospinning Method -- 3.6.5.1 Polyacrylonitrile (PAN) -- 3.6.5.2 Pitch -- 3.6.5.3 Cellulose -- 3.7 Summary -- References -- 4 Carbon Nanofiber and Polymer Conjugate -- 4.1 Introduction -- 4.2 What Is a Composite? -- 4.3 Polymers Used for Conjugating CNF -- 4.3.1 Starch -- 4.3.2 Cellulose -- 4.3.3 Collagen -- 4.3.4 Chitosan -- 4.3.5 Gelatin -- 4.3.6 Fibrin -- 4.3.7 Alginate -- 4.3.8 Poly Vinyl Alcohol (PVA) -- 4.3.9 Poly Ethylene Glycol (PEG) -- 4.3.10 Poly Caprolactone (PCL).
4.3.11 Poly Lactic-co-Glycolic Acid (PLGA) -- 4.3.12 Poly Glycerol Sebacate (PGS) -- 4.4 Approaches Involved in Synthesizing Polymer/ CNF Nanocomposites -- 4.5 Various CNF Composites -- 4.5.1 CNF/Epoxy Composites -- 4.5.2 CNF/Phenolic Resin Composites -- 4.5.3 CNF/Polyaniline (PANI) Composites -- 4.5.4 CNF/Poly (Ether Ether Ketone) Nanocomposite -- 4.5.5 CNF/Biopolymers Nanocomposites -- 4.5.6 CNT/CNF-Epoxy Nanocomposites -- 4.6 Possible Futuristic Applications of CNF/Polymer Composites -- 4.6.1 Sensors -- 4.6.2 Batteries -- 4.6.3 Food Packaging -- 4.7 Summary -- References -- 5 Characterization of Carbon Nanofiber -- 5.1 Introduction -- 5.2 Microscopic Characterization Techniques -- 5.2.1 Atomic Force Microscopy (AFM) -- 5.2.2 Scanning Tunneling Microscopy (STM) -- 5.2.3 Electron Microscopy for Morphology and Surface Characterization -- 5.2.3.1 Scanning Electron Microscopy (SEM) -- 5.2.3.2 Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) -- 5.3 Spectroscopic Characterization -- 5.3.1 Raman Spectroscopic Studies of Carbon Nanofibers -- 5.4 Spectroscopic Analysis of CNF by XRD -- 5.5 Measurement of Mechanical Properties of CNF -- 5.5.1 Tensile Strength Testing/Tension Testing -- 5.5.2 Young's Modulus -- 5.6 Optical Property Analysis of CNF -- 5.6.1 Ellipsometric Method for CNF and MCNF -- 5.6.2 UV-Vis-NIR Spectrophotometric Method for ACNF Analysis -- 5.6.3 Measuring Optical Band Gap -- 5.7 Thermal Properties and Thermal Effect Analysis -- 5.7.1 Thermogravimetric Analysis (TGA) -- 5.7.2 Differential Scanning Calorimetry (DSC) -- 5.7.3 Differential Thermal Analysis (DTA) -- 5.7.4 Thermal Conductivity -- 5.8 Specific Surface Area (SSA) Determination of CNF -- 5.8.1 Methylene Blue (MB) Test -- 5.8.2 Brunauer-Emmett-Teller (BET) Specific Surface Areas -- 5.9 Characterization of Electrical Properties.
5.9.1 Two-Probe and Four-Probe Methods for Resistivity Measurement -- 5.9.2 Four-Probe Methods for Resistivity Measurement -- 5.9.3 Tunneling Atomic Force Microscopy (TUNA) Analysis -- 5.9.4 Hall Effect Measurement -- References -- 6 Carbon Nanofiber - A Potential Superconductor -- 6.1 Introduction -- 6.2 Superconductors -- 6.2.1 Theory of Superconductors -- 6.2.2 Measurement Technique of Superconductivity -- 6.2.3 Types of Superconductors -- 6.3 History of Existing Superconductors -- 6.4 Superconductivity in Organic Materials -- 6.5 Can Carbon Nanofiber Also Be a Possible Superconductor? -- 6.6 Summary -- References -- 7 Carbon Nanofiber for Hydrogen Storage -- 7.1 Introduction -- 7.2 Hydrogen - Its Advantages and Disadvantages as Source of Energy -- 7.2.1 Advantages -- 7.2.2 Disadvantages -- 7.3 Methods of Hydrogen Storage -- 7.3.1 Storage of Liquid Hydrogen -- 7.3.2 Storage of Gaseous Hydrogen -- 7.3.2.1 In Metal Hydride Storage Tanks -- 7.3.2.2 Storage of Compressed Hydrogen in High-Pressure Tank -- 7.3.2.3 Hydrogen Storage in Glass Microspheres -- 7.3.2.4 Storage in Array of Glass Micro Tubules/Capillaries -- 7.3.2.5 Storage of Hydrogen in Chemicals -- 7.3.2.6 Storage of Hydrogen in Metal Amidoboranes -- 7.3.2.7 Storage of Hydrogen in Metal Organic Framework System -- 7.4 Different Forms of Carbon and Nanocarbon for Storage of Hydrogen -- 7.4.1 Activated Carbon -- 7.4.2 Single-Walled Carbon Nanotubes (SWCNTs) -- 7.4.3 Multi-Walled Carbon Nanotubes (MWCNTs) -- 7.4.4 Metal-Doped Carbon Nanotubes -- 7.4.5 Graphene and the Like -- 7.5 Carbon Fibers for Storage of Hydrogen -- 7.6 Pyrolyzed Natural Fibers from Plant/Animals to Store Hydrogen -- 7.6.1 Carbonization/Pyrolysis -- 7.7 Summary -- References -- 8 Carbon Nanofiber for Microwave Absorption -- 8.1 The Need to Develop a Microwave Absorber -- 8.2 Types of Microwave Absorbers.
8.2.1 Resonant Absorber -- 8.2.2 Broadband Absorbers -- 8.2.3 Magnetic Absorbers -- 8.2.4 Dielectric Absorber -- 8.2.5 Metal Absorber -- 8.3 Considerations for Nano Absorbers -- 8.3.1 Nanoferrite Absorber -- 8.3.1.1 Limitations of Ferrites -- 8.4 The Radars -- 8.4.1 Detection and Ranging -- 8.4.2 Multi-Band 3D Radar -- 8.4.3 Quantum Radar -- 8.4.4 LIDAR (Light Imaging Detection &amp -- Ranging) -- 8.5 Role of CNF in Microwave Absorption -- 8.6 Need for Fabricating a CNF and Polymer Composite -- 8.7 Summary -- References -- 9 Carbon Nanofiber for Removal of Dye from Aqueous Medium -- 9.1 Introduction -- 9.2 Morphology of Biogenic and Chemically Synthesized CNFs from Different Precursors -- 9.2.1 Chemical Vapor Deposition Method (CVD) -- 9.2.2 Plasma-Enhanced Chemical Vapor Deposition (PECVD) -- 9.2.3 Electrospinning of Polymer Fibers -- 9.3 Novel Dye Removal Properties of CNF -- 9.4 Absorption of Different Dyes -- 9.5 Summary -- References -- 10 Carbon Nanofiber to Remove Heavy Metals from Aqueous Medium -- 10.1 Introduction -- 10.1.1 What Are Heavy Metals? -- 10.1.2 List of Heavy Metals -- 10.1.3 Sources of Heavy Metals -- 10.2 Are Heavy Metals Essential for Living Beings? -- 10.2.1 Damaging Effect of Heavy Metals on Biosystem -- 10.2.1.1 Arsenic -- 10.2.1.2 Cadmium -- 10.2.1.3 Chromium -- 10.2.1.4 Lead -- 10.2.1.5 Mercury -- 10.2.2 Heavy Metal and Soil Toxicity -- 10.2.3 Heavy Metal and Plant Toxicity -- 10.2.4 Toxic Effects of Heavy Metals on Aquatic Environment -- 10.3 Methods Used for Removal of Heavy Metals -- 10.3.1 Adsorption -- 10.3.1.1 Adsorption on New Adsorbents -- 10.3.1.2 Adsorption on Modified Natural Materials -- 10.3.1.3 Adsorption on Industrial By-Products -- 10.3.1.4 Adsorption on Modified Agricultural and Biological Wastes (Biosorption) -- 10.3.1.5 Adsorption on Modified Biopolymers and Hydrogels.
10.3.2 Membrane Separation/Filtration.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Foreword -- Preface -- 1 An Introduction to Carbon Nanofiber -- 1.1 Introduction -- 1.1.1 History of Carbon Fiber -- 1.1.2 What Is a Carbon Fiber? -- 1.1.3 Structures of Carbon Fibers -- 1.1.4 Synthesis of Carbon Fibers -- 1.1.4.1 Carbon Fibers from PAN -- 1.1.5 Properties of Carbon Fibers -- 1.2 Properties of Carbon Nanofiber and How It Differs from Carbon Nanotube -- 1.2.1 History of CNF -- 1.2.2 Role of Surface States in Controlling the Properties of CNFs -- 1.3 Synthesis of Carbon Nanofiber (CNF) -- 1.3.1 Chemical Vapor Deposition (CVD) Method -- 1.3.2 Precursors for CNF -- 1.3.3 Use of Catalyst in the Synthesis of CNF -- 1.3.4 Selection of Variable Parameters for Growth of CNF -- 1.3.5 Epitaxial Growth of Aligned CNF -- 1.3.6 Mechanism of CNF Synthesis -- 1.4 Properties of CNF and Its Composites -- 1.5 Applications of CNF -- 1.6 Health Hazards of CNF -- 1.7 Summary -- References -- 2 Biogenic Carbon Nanofibers -- 2.1 Introduction -- 2.2 Plants as Source of Precursor for CNF Synthesis -- 2.2.1 Plant Parts -- 2.2.1.1 Fibrous Plant Material Used for Synthesizing CNF -- 2.2.1.2 Characterization of CNF Obtained by Pyrolysis of Plant Seeds -- 2.2.2 Plant Metabolites -- 2.2.2.1 Characterization of CNF Obtained by Pyrolysis of Plant Metabolites -- 2.3 CNF Derived from Parts of Different Plants and Their Applications -- 2.3.1 Hydrogen Storage in CNF -- 2.3.2 Removal of Heavy Metals by CNF -- 2.3.3 Microwave Absorption Capacity of CNF -- 2.3.4 CNF as Electrocatalysts for Microbial Energy Harvesting -- 2.3.5 CNF as Regenerative Medicine -- 2.3.6 CNF as Deodorizer -- 2.3.7 CNF Composites for Strong and Lightweight Material -- 2.3.8 Biogenic CNF as Supercapacitor -- 2.3.9 Plant-Derived CNM for Use in Coatings.

2.4 Comparative Structure of Chemically and Biogenically Synthesized CNF -- 2.4.1 CNF Synthesized from Chemical Precursors -- 2.4.2 CNF Synthesized from Plant Parts or Plant Metabolites as Precursors -- 2.5 Concluding Remarks -- References -- 3 Role of Nanocatalysts in Synthesis of Carbon Nanofiber -- 3.1 Introduction -- 3.2 Nanocatalysts -- 3.2.1 Concept of Nanocatalysis -- 3.2.2 Metallic Nanoparticles (NP) as Catalyst -- 3.2.3 Types of Nanometals as Catalyst -- 3.2.3.1 Nanometal Colloids as Catalysts -- 3.2.3.2 Nanoclusters as Catalysts -- 3.2.3.3 Nanoparticles as Catalysts -- 3.2.3.4 Nanopowder as Catalysts -- 3.3 Methods for the Preparation of Nanoparticles -- 3.3.1 Hydrothermal Method of Metal Nanoparticles -- 3.3.2 Microwave-Irradiated Synthesis of Metal Nanoparticles -- 3.3.3 Dendrimer-Assisted Synthesis of Metal Nanoparticles -- 3.3.4 Reverse Micelle Method of Metal Nanoparticles -- 3.3.5 Co-Precipitation Method of Metal Nanoparticles -- 3.3.6 Biogenic Synthesis (Green Synthesis) Method of Metal Nanoparticles -- 3.4 Role of Nanocatalyst in the Production of CNF -- 3.5 Different Types of CNF -- 3.6 Synthesis of Carbon Nanofiber (CNF) Using Nanocatalysts -- 3.6.1 Laser Ablation Method -- 3.6.2 Chemical Vapor Deposition (CVD) -- 3.6.3 Self-Propagating High-Temperature Synthesis (SHS) or Combustion Synthesis (CS) -- 3.6.4 Floating Catalyst Method -- 3.6.5 Electrospinning Method -- 3.6.5.1 Polyacrylonitrile (PAN) -- 3.6.5.2 Pitch -- 3.6.5.3 Cellulose -- 3.7 Summary -- References -- 4 Carbon Nanofiber and Polymer Conjugate -- 4.1 Introduction -- 4.2 What Is a Composite? -- 4.3 Polymers Used for Conjugating CNF -- 4.3.1 Starch -- 4.3.2 Cellulose -- 4.3.3 Collagen -- 4.3.4 Chitosan -- 4.3.5 Gelatin -- 4.3.6 Fibrin -- 4.3.7 Alginate -- 4.3.8 Poly Vinyl Alcohol (PVA) -- 4.3.9 Poly Ethylene Glycol (PEG) -- 4.3.10 Poly Caprolactone (PCL).

4.3.11 Poly Lactic-co-Glycolic Acid (PLGA) -- 4.3.12 Poly Glycerol Sebacate (PGS) -- 4.4 Approaches Involved in Synthesizing Polymer/ CNF Nanocomposites -- 4.5 Various CNF Composites -- 4.5.1 CNF/Epoxy Composites -- 4.5.2 CNF/Phenolic Resin Composites -- 4.5.3 CNF/Polyaniline (PANI) Composites -- 4.5.4 CNF/Poly (Ether Ether Ketone) Nanocomposite -- 4.5.5 CNF/Biopolymers Nanocomposites -- 4.5.6 CNT/CNF-Epoxy Nanocomposites -- 4.6 Possible Futuristic Applications of CNF/Polymer Composites -- 4.6.1 Sensors -- 4.6.2 Batteries -- 4.6.3 Food Packaging -- 4.7 Summary -- References -- 5 Characterization of Carbon Nanofiber -- 5.1 Introduction -- 5.2 Microscopic Characterization Techniques -- 5.2.1 Atomic Force Microscopy (AFM) -- 5.2.2 Scanning Tunneling Microscopy (STM) -- 5.2.3 Electron Microscopy for Morphology and Surface Characterization -- 5.2.3.1 Scanning Electron Microscopy (SEM) -- 5.2.3.2 Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) -- 5.3 Spectroscopic Characterization -- 5.3.1 Raman Spectroscopic Studies of Carbon Nanofibers -- 5.4 Spectroscopic Analysis of CNF by XRD -- 5.5 Measurement of Mechanical Properties of CNF -- 5.5.1 Tensile Strength Testing/Tension Testing -- 5.5.2 Young's Modulus -- 5.6 Optical Property Analysis of CNF -- 5.6.1 Ellipsometric Method for CNF and MCNF -- 5.6.2 UV-Vis-NIR Spectrophotometric Method for ACNF Analysis -- 5.6.3 Measuring Optical Band Gap -- 5.7 Thermal Properties and Thermal Effect Analysis -- 5.7.1 Thermogravimetric Analysis (TGA) -- 5.7.2 Differential Scanning Calorimetry (DSC) -- 5.7.3 Differential Thermal Analysis (DTA) -- 5.7.4 Thermal Conductivity -- 5.8 Specific Surface Area (SSA) Determination of CNF -- 5.8.1 Methylene Blue (MB) Test -- 5.8.2 Brunauer-Emmett-Teller (BET) Specific Surface Areas -- 5.9 Characterization of Electrical Properties.

5.9.1 Two-Probe and Four-Probe Methods for Resistivity Measurement -- 5.9.2 Four-Probe Methods for Resistivity Measurement -- 5.9.3 Tunneling Atomic Force Microscopy (TUNA) Analysis -- 5.9.4 Hall Effect Measurement -- References -- 6 Carbon Nanofiber - A Potential Superconductor -- 6.1 Introduction -- 6.2 Superconductors -- 6.2.1 Theory of Superconductors -- 6.2.2 Measurement Technique of Superconductivity -- 6.2.3 Types of Superconductors -- 6.3 History of Existing Superconductors -- 6.4 Superconductivity in Organic Materials -- 6.5 Can Carbon Nanofiber Also Be a Possible Superconductor? -- 6.6 Summary -- References -- 7 Carbon Nanofiber for Hydrogen Storage -- 7.1 Introduction -- 7.2 Hydrogen - Its Advantages and Disadvantages as Source of Energy -- 7.2.1 Advantages -- 7.2.2 Disadvantages -- 7.3 Methods of Hydrogen Storage -- 7.3.1 Storage of Liquid Hydrogen -- 7.3.2 Storage of Gaseous Hydrogen -- 7.3.2.1 In Metal Hydride Storage Tanks -- 7.3.2.2 Storage of Compressed Hydrogen in High-Pressure Tank -- 7.3.2.3 Hydrogen Storage in Glass Microspheres -- 7.3.2.4 Storage in Array of Glass Micro Tubules/Capillaries -- 7.3.2.5 Storage of Hydrogen in Chemicals -- 7.3.2.6 Storage of Hydrogen in Metal Amidoboranes -- 7.3.2.7 Storage of Hydrogen in Metal Organic Framework System -- 7.4 Different Forms of Carbon and Nanocarbon for Storage of Hydrogen -- 7.4.1 Activated Carbon -- 7.4.2 Single-Walled Carbon Nanotubes (SWCNTs) -- 7.4.3 Multi-Walled Carbon Nanotubes (MWCNTs) -- 7.4.4 Metal-Doped Carbon Nanotubes -- 7.4.5 Graphene and the Like -- 7.5 Carbon Fibers for Storage of Hydrogen -- 7.6 Pyrolyzed Natural Fibers from Plant/Animals to Store Hydrogen -- 7.6.1 Carbonization/Pyrolysis -- 7.7 Summary -- References -- 8 Carbon Nanofiber for Microwave Absorption -- 8.1 The Need to Develop a Microwave Absorber -- 8.2 Types of Microwave Absorbers.

8.2.1 Resonant Absorber -- 8.2.2 Broadband Absorbers -- 8.2.3 Magnetic Absorbers -- 8.2.4 Dielectric Absorber -- 8.2.5 Metal Absorber -- 8.3 Considerations for Nano Absorbers -- 8.3.1 Nanoferrite Absorber -- 8.3.1.1 Limitations of Ferrites -- 8.4 The Radars -- 8.4.1 Detection and Ranging -- 8.4.2 Multi-Band 3D Radar -- 8.4.3 Quantum Radar -- 8.4.4 LIDAR (Light Imaging Detection &amp -- Ranging) -- 8.5 Role of CNF in Microwave Absorption -- 8.6 Need for Fabricating a CNF and Polymer Composite -- 8.7 Summary -- References -- 9 Carbon Nanofiber for Removal of Dye from Aqueous Medium -- 9.1 Introduction -- 9.2 Morphology of Biogenic and Chemically Synthesized CNFs from Different Precursors -- 9.2.1 Chemical Vapor Deposition Method (CVD) -- 9.2.2 Plasma-Enhanced Chemical Vapor Deposition (PECVD) -- 9.2.3 Electrospinning of Polymer Fibers -- 9.3 Novel Dye Removal Properties of CNF -- 9.4 Absorption of Different Dyes -- 9.5 Summary -- References -- 10 Carbon Nanofiber to Remove Heavy Metals from Aqueous Medium -- 10.1 Introduction -- 10.1.1 What Are Heavy Metals? -- 10.1.2 List of Heavy Metals -- 10.1.3 Sources of Heavy Metals -- 10.2 Are Heavy Metals Essential for Living Beings? -- 10.2.1 Damaging Effect of Heavy Metals on Biosystem -- 10.2.1.1 Arsenic -- 10.2.1.2 Cadmium -- 10.2.1.3 Chromium -- 10.2.1.4 Lead -- 10.2.1.5 Mercury -- 10.2.2 Heavy Metal and Soil Toxicity -- 10.2.3 Heavy Metal and Plant Toxicity -- 10.2.4 Toxic Effects of Heavy Metals on Aquatic Environment -- 10.3 Methods Used for Removal of Heavy Metals -- 10.3.1 Adsorption -- 10.3.1.1 Adsorption on New Adsorbents -- 10.3.1.2 Adsorption on Modified Natural Materials -- 10.3.1.3 Adsorption on Industrial By-Products -- 10.3.1.4 Adsorption on Modified Agricultural and Biological Wastes (Biosorption) -- 10.3.1.5 Adsorption on Modified Biopolymers and Hydrogels.

10.3.2 Membrane Separation/Filtration.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.