ORPP logo
Image from Google Jackets

Total-Reflection X-Ray Fluorescence Analysis and Related Methods.

By: Contributor(s): Material type: TextTextSeries: Chemical Analysis: a Series of Monographs on Analytical Chemistry and Its Applications SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 2nd edDescription: 1 online resource (555 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118985878
Subject(s): Genre/Form: Additional physical formats: Print version:: Total-Reflection X-Ray Fluorescence Analysis and Related MethodsDDC classification:
  • 543/.62
LOC classification:
  • QD96.F56 -- .R456 2015eb
Online resources:
Contents:
Total-Relection X-ray Fluorescence Analysis and Related Methods -- Contents -- Foreword -- Acknowledgments -- List of Acronyms -- List of Physical Units and Subunits -- List of Symbols -- Chapter 1: Fundamentals of X-Ray Fluorescence -- 1.1 A Short History of XRF -- 1.2 The New Variant TXRF -- 1.2.1 Retrospect on its Development -- 1.2.2 Relationship of XRF and TXRF -- 1.3 Nature and Production of X-Rays -- 1.3.1 The Nature of X-Rays -- 1.3.2 X-Ray Tubes as X-Ray Sources -- 1.3.2.1 The Line Spectrum -- 1.3.2.2 The Continuous Spectrum -- 1.3.3 Polarization of X-Rays -- 1.3.4 Synchrotron Radiation as X-Ray Source -- 1.3.4.1 Electrons in Fields of Bending Magnets -- 1.3.4.2 Radiation Power of a Single Electron -- 1.3.4.3 Angular and Spectral Distribution of SR -- 1.3.4.4 Comparison with Black-Body Radiation -- 1.4 Attenuation of X-Rays -- 1.4.1 Photoelectric Absorption -- 1.4.2 X-Ray Scatter -- 1.4.3 Total Attenuation -- 1.5 Deflection of X-Rays -- 1.5.1 Reflection and Refraction -- 1.5.2 Diffraction and Bragg's Law -- 1.5.3 Total External Reflection -- 1.5.3.1 Reflectivity -- 1.5.3.2 Penetration Depth -- 1.5.4 Refraction and Dispersion -- References -- Chapter 2: Principles of Total Reflection XRF -- 2.1 Interference of X-Rays -- 2.1.1 Double-Beam Interference -- 2.1.2 Multiple-Beam Interference -- 2.2 X-Ray Standing Wave Fields -- 2.2.1 Standing Waves in Front of a Thick Substrate -- 2.2.2 Standing Wave Fields Within a Thin Layer -- 2.2.3 Standing Waves Within a Multilayer or Crystal -- 2.3 Intensity of Fluorescence Signals -- 2.3.1 Infinitely Thick and Flat Substrates -- 2.3.2 Granular Residues on a Substrate -- 2.3.3 Buried Layers in a Substrate -- 2.3.4 Reflecting Layers on Substrates -- 2.3.5 Periodic Multilayers and Crystals -- 2.4 Formalism for Intensity Calculations -- 2.4.1 A Thick and Flat Substrate.
2.4.2 A Thin Homogeneous Layer on a Substrate -- 2.4.3 A Stratified Medium of Several Layers -- References -- Chapter 3: Instrumentation for TXRF and GI-XRF -- 3.1 Basic Instrumental Setup -- 3.2 High and Low-Power X-Ray Sources -- 3.2.1 Fine-Focus X-Ray Tubes -- 3.2.2 Rotating Anode Tubes -- 3.2.3 Air-Cooled X-Ray Tubes -- 3.3 Synchrotron Facilities -- 3.3.1 Basic Setup with Bending Magnets -- 3.3.2 Undulators, Wigglers, and FELs -- 3.3.3 Facilities Worldwide -- 3.4 The Beam Adapting Unit -- 3.4.1 Low-Pass Filters -- 3.4.2 Simple Monochromators -- 3.4.3 Double-Crystal Monochromators -- 3.5 Sample Positioning -- 3.5.1 Sample Carriers -- 3.5.2 Fixed Angle Adjustment for TXRF ("Angle Cut") -- 3.5.3 Stepwise-Angle Variation for GI-XRF ("Angle Scan") -- 3.6 Energy-Dispersive Detection of X-Rays -- 3.6.1 The Semiconductor Detector -- 3.6.2 The Silicon Drift Detector -- 3.6.3 Position Sensitive Detectors -- 3.7 Wavelength-Dispersive Detection of X-Rays -- 3.7.1 Dispersing Crystals with Soller Collimators -- 3.7.2 Gas-Filled Detectors -- 3.7.3 Scintillation Detectors -- 3.8 Spectra Registration and Evaluation -- 3.8.1 The Registration Unit -- 3.8.2 Performance Characteristics -- 3.8.2.1 Detector Efficiency -- 3.8.2.2 Spectral Resolution -- 3.8.2.3 Input-Output Yield -- 3.8.2.4 The Escape-Peak Phenomenon -- References -- Chapter 4: Performance of TXRF and GI-XRF Analyses -- 4.1 Preparations for Measurement -- 4.1.1 Cleaning Procedures -- 4.1.2 Preparation of Samples -- 4.1.3 Presentation of a Specimen -- 4.1.3.1 Microliter Sampling by Pipettes -- 4.1.3.2 Nanoliter Droplets by Capillaries -- 4.1.3.3 Picoliter-Sized Droplets by Inkjet Printing -- 4.1.3.4 Microdispensing of Liquids by Triple-Jet Technology -- 4.1.3.5 Solid Matter of Different Kinds -- 4.2 Acquisition of Spectra -- 4.2.1 The Setup for Excitation with X-Ray Tubes.
4.2.2 Excitation by Synchrotron Radiation -- 4.2.3 Recording the Spectrograms -- 4.2.3.1 Energy-Dispersive Variant -- 4.2.3.2 Wavelength-Dispersive Mode -- 4.3 Qualitative Analysis -- 4.3.1 Shortcomings of Spectra -- 4.3.1.1 Strong Spectral Interferences -- 4.3.1.2 Regard of Sum Peaks -- 4.3.1.3 Dealing with Escape Peaks -- 4.3.2 Unambiguous Element Detection -- 4.3.3 Fingerprint Analysis -- 4.4 Quantitative Micro- and Trace Analyses -- 4.4.1 Prerequisites for Quantification -- 4.4.1.1 Determination of Net Intensities -- 4.4.1.2 Determination of Relative Sensitivities -- 4.4.2 Quantification by Internal Standardization -- 4.4.2.1 Standard Addition for a Single Element -- 4.4.2.2 Multielement Determinations -- 4.4.3 Conditions and Limitations -- 4.4.3.1 Mass and Thickness of Thin Layers -- 4.4.3.2 Residues of Microliter Droplets -- 4.4.3.3 Coherence Length of Radiation -- 4.5 Quantitative Surface and Thin-Layer Analyses by TXRF -- 4.5.1 Distinguishing Between Types of Contamination -- 4.5.1.1 Bulk-Type Impurities -- 4.5.1.2 Particulate Contamination -- 4.5.1.3 Thin-Layer Covering -- 4.5.1.4 Mixture of Contaminations -- 4.5.2 Characterization of Thin Layers by TXRF -- 4.5.2.1 Multifold Repeated Chemical Etching -- 4.5.2.2 Stepwise Repeated Planar Sputter Etching -- 4.6 Quantitative Surface and Thin-Layer Analyses by GI-XRF -- 4.6.1 Recording Angle-Dependent Intensity Profiles -- 4.6.2 Considering the Footprint Effect -- 4.6.3 Regarding the Coherence Length -- 4.6.4 Depth Profiling at Grazing Incidence -- 4.6.5 Including the Surface Roughness -- References -- Chapter 5: Different Fields of Applications -- 5.1 Environmental and Geological Applications -- 5.1.1 Natural Water Samples -- 5.1.2 Airborne Particulates -- 5.1.3 Biomonitoring -- 5.1.4 Geological Samples -- 5.2 Biological and Biochemical Applications.
5.2.1 Beverages: Water, Tea, Coffee, Must, and Wine -- 5.2.2 Vegetable and Essential Oils -- 5.2.3 Plant Materials and Extracts -- 5.2.4 Unicellular Organisms and Biomolecules -- 5.3 Medical, Clinical, and Pharmaceutical Applications -- 5.3.1 Blood, Plasma, and Serum -- 5.3.2 Urine, Cerebrospinal, and Amniotic Fluid -- 5.3.3 Tissue Samples -- 5.3.3.1 Freeze-Cutting of Organs by a Microtome -- 5.3.3.2 Healthy and Cancerous Tissue Samples -- 5.3.4 Medicines and Remedies -- 5.4 Industrial or Chemical Applications -- 5.4.1 Ultrapure Reagents -- 5.4.2 High-Purity Silicon and Silica -- 5.4.3 Ultrapure Aluminum -- 5.4.4 High-Purity Ceramic Powders -- 5.4.5 Impurities in Nuclear Materials -- 5.4.6 Hydrocarbons and Their Polymers -- 5.4.7 Contamination-Free Wafer Surfaces -- 5.4.7.1 Wafers Controlled by Direct TXRF -- 5.4.7.2 Contaminations Determined by VPD-TXRF -- 5.4.8 Characterization of Nanostructured Samples -- 5.4.8.1 Shallow Layers by Sputter Etching and TXRF -- 5.4.8.2 Thin-Layer Structures by Direct GI-XRF -- 5.4.8.3 Nanoparticles by TXRF and GI-XRF -- 5.5 Art Historical and Forensic Applications -- 5.5.1 Pigments, Inks, and Varnishes -- 5.5.2 Metals and Alloys -- 5.5.3 Textile Fibers and Glass Splinters -- 5.5.4 Drug Abuse and Poisoning -- References -- Chapter 6: Efficiency and Evaluation -- 6.1 Analytical Considerations -- 6.1.1 General Costs of Installation and Upkeep -- 6.1.2 Detection Power for Elements -- 6.1.3 Reliability of Determinations -- 6.1.4 The Great Variety of Suitable Samples -- 6.1.5 Round-Robin Tests -- 6.2 Utility and Competitiveness of TXRF and GI-XRF -- 6.2.1 Advantages and Limitations -- 6.2.2 Comparison of TXRF with Competitors -- 6.2.3 GI-XRF and Competing Methods -- 6.3 Perception and Propagation of TXRF Methods -- 6.3.1 Commercially Available Instruments -- 6.3.2 Support by the International Atomic Energy Agency.
6.3.3 Worldwide Distribution of TXRF and Related Methods -- 6.3.4 Standardization by ISO and DIN -- 6.3.5 International Cooperation and Activity -- References -- Chapter 7: Trends and Future Prospects -- 7.1 Instrumental Developments -- 7.1.1 Excitation by Synchrotron Radiation -- 7.1.2 New Variants of X-Ray Sources -- 7.1.3 Capillaries and Waveguides for Beam Adapting -- 7.1.4 New Types of X-Ray Detectors -- 7.2 Methodical Developments -- 7.2.1 Detection of Light Elements -- 7.2.2 Ablation and Deposition Techniques -- 7.2.3 Grazing Exit X-Ray Fluorescence -- 7.2.4 Reference-Free Quantification -- 7.2.5 Time-Resolved In Situ Analysis -- 7.3 Future Prospects by Combinations -- 7.3.1 Combination with X-Ray Reflectometry -- 7.3.2 EXAFS and Total Reflection Geometry -- 7.3.3 Combination with XANES or NEXAFS -- 7.3.4 X-Ray Diffractometry at Total Reflection -- 7.3.5 Total Reflection and X-Ray Photoelectron Spectrometry -- References -- Index -- End User License Agreement.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Total-Relection X-ray Fluorescence Analysis and Related Methods -- Contents -- Foreword -- Acknowledgments -- List of Acronyms -- List of Physical Units and Subunits -- List of Symbols -- Chapter 1: Fundamentals of X-Ray Fluorescence -- 1.1 A Short History of XRF -- 1.2 The New Variant TXRF -- 1.2.1 Retrospect on its Development -- 1.2.2 Relationship of XRF and TXRF -- 1.3 Nature and Production of X-Rays -- 1.3.1 The Nature of X-Rays -- 1.3.2 X-Ray Tubes as X-Ray Sources -- 1.3.2.1 The Line Spectrum -- 1.3.2.2 The Continuous Spectrum -- 1.3.3 Polarization of X-Rays -- 1.3.4 Synchrotron Radiation as X-Ray Source -- 1.3.4.1 Electrons in Fields of Bending Magnets -- 1.3.4.2 Radiation Power of a Single Electron -- 1.3.4.3 Angular and Spectral Distribution of SR -- 1.3.4.4 Comparison with Black-Body Radiation -- 1.4 Attenuation of X-Rays -- 1.4.1 Photoelectric Absorption -- 1.4.2 X-Ray Scatter -- 1.4.3 Total Attenuation -- 1.5 Deflection of X-Rays -- 1.5.1 Reflection and Refraction -- 1.5.2 Diffraction and Bragg's Law -- 1.5.3 Total External Reflection -- 1.5.3.1 Reflectivity -- 1.5.3.2 Penetration Depth -- 1.5.4 Refraction and Dispersion -- References -- Chapter 2: Principles of Total Reflection XRF -- 2.1 Interference of X-Rays -- 2.1.1 Double-Beam Interference -- 2.1.2 Multiple-Beam Interference -- 2.2 X-Ray Standing Wave Fields -- 2.2.1 Standing Waves in Front of a Thick Substrate -- 2.2.2 Standing Wave Fields Within a Thin Layer -- 2.2.3 Standing Waves Within a Multilayer or Crystal -- 2.3 Intensity of Fluorescence Signals -- 2.3.1 Infinitely Thick and Flat Substrates -- 2.3.2 Granular Residues on a Substrate -- 2.3.3 Buried Layers in a Substrate -- 2.3.4 Reflecting Layers on Substrates -- 2.3.5 Periodic Multilayers and Crystals -- 2.4 Formalism for Intensity Calculations -- 2.4.1 A Thick and Flat Substrate.

2.4.2 A Thin Homogeneous Layer on a Substrate -- 2.4.3 A Stratified Medium of Several Layers -- References -- Chapter 3: Instrumentation for TXRF and GI-XRF -- 3.1 Basic Instrumental Setup -- 3.2 High and Low-Power X-Ray Sources -- 3.2.1 Fine-Focus X-Ray Tubes -- 3.2.2 Rotating Anode Tubes -- 3.2.3 Air-Cooled X-Ray Tubes -- 3.3 Synchrotron Facilities -- 3.3.1 Basic Setup with Bending Magnets -- 3.3.2 Undulators, Wigglers, and FELs -- 3.3.3 Facilities Worldwide -- 3.4 The Beam Adapting Unit -- 3.4.1 Low-Pass Filters -- 3.4.2 Simple Monochromators -- 3.4.3 Double-Crystal Monochromators -- 3.5 Sample Positioning -- 3.5.1 Sample Carriers -- 3.5.2 Fixed Angle Adjustment for TXRF ("Angle Cut") -- 3.5.3 Stepwise-Angle Variation for GI-XRF ("Angle Scan") -- 3.6 Energy-Dispersive Detection of X-Rays -- 3.6.1 The Semiconductor Detector -- 3.6.2 The Silicon Drift Detector -- 3.6.3 Position Sensitive Detectors -- 3.7 Wavelength-Dispersive Detection of X-Rays -- 3.7.1 Dispersing Crystals with Soller Collimators -- 3.7.2 Gas-Filled Detectors -- 3.7.3 Scintillation Detectors -- 3.8 Spectra Registration and Evaluation -- 3.8.1 The Registration Unit -- 3.8.2 Performance Characteristics -- 3.8.2.1 Detector Efficiency -- 3.8.2.2 Spectral Resolution -- 3.8.2.3 Input-Output Yield -- 3.8.2.4 The Escape-Peak Phenomenon -- References -- Chapter 4: Performance of TXRF and GI-XRF Analyses -- 4.1 Preparations for Measurement -- 4.1.1 Cleaning Procedures -- 4.1.2 Preparation of Samples -- 4.1.3 Presentation of a Specimen -- 4.1.3.1 Microliter Sampling by Pipettes -- 4.1.3.2 Nanoliter Droplets by Capillaries -- 4.1.3.3 Picoliter-Sized Droplets by Inkjet Printing -- 4.1.3.4 Microdispensing of Liquids by Triple-Jet Technology -- 4.1.3.5 Solid Matter of Different Kinds -- 4.2 Acquisition of Spectra -- 4.2.1 The Setup for Excitation with X-Ray Tubes.

4.2.2 Excitation by Synchrotron Radiation -- 4.2.3 Recording the Spectrograms -- 4.2.3.1 Energy-Dispersive Variant -- 4.2.3.2 Wavelength-Dispersive Mode -- 4.3 Qualitative Analysis -- 4.3.1 Shortcomings of Spectra -- 4.3.1.1 Strong Spectral Interferences -- 4.3.1.2 Regard of Sum Peaks -- 4.3.1.3 Dealing with Escape Peaks -- 4.3.2 Unambiguous Element Detection -- 4.3.3 Fingerprint Analysis -- 4.4 Quantitative Micro- and Trace Analyses -- 4.4.1 Prerequisites for Quantification -- 4.4.1.1 Determination of Net Intensities -- 4.4.1.2 Determination of Relative Sensitivities -- 4.4.2 Quantification by Internal Standardization -- 4.4.2.1 Standard Addition for a Single Element -- 4.4.2.2 Multielement Determinations -- 4.4.3 Conditions and Limitations -- 4.4.3.1 Mass and Thickness of Thin Layers -- 4.4.3.2 Residues of Microliter Droplets -- 4.4.3.3 Coherence Length of Radiation -- 4.5 Quantitative Surface and Thin-Layer Analyses by TXRF -- 4.5.1 Distinguishing Between Types of Contamination -- 4.5.1.1 Bulk-Type Impurities -- 4.5.1.2 Particulate Contamination -- 4.5.1.3 Thin-Layer Covering -- 4.5.1.4 Mixture of Contaminations -- 4.5.2 Characterization of Thin Layers by TXRF -- 4.5.2.1 Multifold Repeated Chemical Etching -- 4.5.2.2 Stepwise Repeated Planar Sputter Etching -- 4.6 Quantitative Surface and Thin-Layer Analyses by GI-XRF -- 4.6.1 Recording Angle-Dependent Intensity Profiles -- 4.6.2 Considering the Footprint Effect -- 4.6.3 Regarding the Coherence Length -- 4.6.4 Depth Profiling at Grazing Incidence -- 4.6.5 Including the Surface Roughness -- References -- Chapter 5: Different Fields of Applications -- 5.1 Environmental and Geological Applications -- 5.1.1 Natural Water Samples -- 5.1.2 Airborne Particulates -- 5.1.3 Biomonitoring -- 5.1.4 Geological Samples -- 5.2 Biological and Biochemical Applications.

5.2.1 Beverages: Water, Tea, Coffee, Must, and Wine -- 5.2.2 Vegetable and Essential Oils -- 5.2.3 Plant Materials and Extracts -- 5.2.4 Unicellular Organisms and Biomolecules -- 5.3 Medical, Clinical, and Pharmaceutical Applications -- 5.3.1 Blood, Plasma, and Serum -- 5.3.2 Urine, Cerebrospinal, and Amniotic Fluid -- 5.3.3 Tissue Samples -- 5.3.3.1 Freeze-Cutting of Organs by a Microtome -- 5.3.3.2 Healthy and Cancerous Tissue Samples -- 5.3.4 Medicines and Remedies -- 5.4 Industrial or Chemical Applications -- 5.4.1 Ultrapure Reagents -- 5.4.2 High-Purity Silicon and Silica -- 5.4.3 Ultrapure Aluminum -- 5.4.4 High-Purity Ceramic Powders -- 5.4.5 Impurities in Nuclear Materials -- 5.4.6 Hydrocarbons and Their Polymers -- 5.4.7 Contamination-Free Wafer Surfaces -- 5.4.7.1 Wafers Controlled by Direct TXRF -- 5.4.7.2 Contaminations Determined by VPD-TXRF -- 5.4.8 Characterization of Nanostructured Samples -- 5.4.8.1 Shallow Layers by Sputter Etching and TXRF -- 5.4.8.2 Thin-Layer Structures by Direct GI-XRF -- 5.4.8.3 Nanoparticles by TXRF and GI-XRF -- 5.5 Art Historical and Forensic Applications -- 5.5.1 Pigments, Inks, and Varnishes -- 5.5.2 Metals and Alloys -- 5.5.3 Textile Fibers and Glass Splinters -- 5.5.4 Drug Abuse and Poisoning -- References -- Chapter 6: Efficiency and Evaluation -- 6.1 Analytical Considerations -- 6.1.1 General Costs of Installation and Upkeep -- 6.1.2 Detection Power for Elements -- 6.1.3 Reliability of Determinations -- 6.1.4 The Great Variety of Suitable Samples -- 6.1.5 Round-Robin Tests -- 6.2 Utility and Competitiveness of TXRF and GI-XRF -- 6.2.1 Advantages and Limitations -- 6.2.2 Comparison of TXRF with Competitors -- 6.2.3 GI-XRF and Competing Methods -- 6.3 Perception and Propagation of TXRF Methods -- 6.3.1 Commercially Available Instruments -- 6.3.2 Support by the International Atomic Energy Agency.

6.3.3 Worldwide Distribution of TXRF and Related Methods -- 6.3.4 Standardization by ISO and DIN -- 6.3.5 International Cooperation and Activity -- References -- Chapter 7: Trends and Future Prospects -- 7.1 Instrumental Developments -- 7.1.1 Excitation by Synchrotron Radiation -- 7.1.2 New Variants of X-Ray Sources -- 7.1.3 Capillaries and Waveguides for Beam Adapting -- 7.1.4 New Types of X-Ray Detectors -- 7.2 Methodical Developments -- 7.2.1 Detection of Light Elements -- 7.2.2 Ablation and Deposition Techniques -- 7.2.3 Grazing Exit X-Ray Fluorescence -- 7.2.4 Reference-Free Quantification -- 7.2.5 Time-Resolved In Situ Analysis -- 7.3 Future Prospects by Combinations -- 7.3.1 Combination with X-Ray Reflectometry -- 7.3.2 EXAFS and Total Reflection Geometry -- 7.3.3 Combination with XANES or NEXAFS -- 7.3.4 X-Ray Diffractometry at Total Reflection -- 7.3.5 Total Reflection and X-Ray Photoelectron Spectrometry -- References -- Index -- End User License Agreement.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.