ORPP logo
Image from Google Jackets

Anaerobic Sewage Treatment : Optimization of Process and Physical Design of Anaerobic and Complementary Processes.

By: Contributor(s): Material type: TextTextPublisher: London : IWA Publishing, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (452 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781780409627
Subject(s): Genre/Form: Additional physical formats: Print version:: Anaerobic Sewage TreatmentDDC classification:
  • 628.354
LOC classification:
  • TD756.45 .H336 2019
Online resources:
Contents:
Cover -- Copyright -- Contents -- Preface -- Authors -- Acknowledgements -- Symbols and Abbreviations -- Contents in Brief -- Chapter 1: Sewage characteristics and treatment systems -- 1.1 Introduction -- 1.2 Impact of Inadequate Sewage Treatment -- 1.3 Effluent Standards and Treatment Objectives -- 1.4 Sewage Treatment Systems -- 1.4.1 Preliminary treatment -- 1.4.2 Primary treatment -- 1.4.3 Secondary treatment -- 1.4.4 Tertiary treatment -- 1.5 Sewage Characteristics -- 1.5.1 Flow rate -- 1.5.2 Measurement of organic material -- 1.6 Comparison of Measurement Parameters -- Chapter 2: Organic material &amp -- bacterial metabolism -- 2.1 Bacterial Metabolism -- 2.1.1 Anabolism -- 2.1.2 Oxidative catabolism -- 2.1.3 Fermentative catabolism or anaerobic digestion -- 2.2 Conversion Processes in Biological Treatment -- 2.2.1 Conversions in aerobic systems -- 2.2.2 Conversions in anaerobic systems -- 2.3 Anaerobic Digestion of Organic Material -- 2.3.1 Hydrolysis -- 2.3.2 Acidogenesis -- 2.3.3 Acetogenesis -- 2.3.4 Methanogenesis -- 2.3.5 Thermodynamic considerations -- 2.4 Competing Processes -- 2.5 Influence of Environmental Factors -- 2.5.1 Temperature -- 2.5.2 pH in the reactor -- 2.5.3 Toxic compounds and inhibitors -- 2.5.4 Nutrients -- 2.6 Mass Balance of Organic Material -- Chapter 3: Anaerobic sewage treatment systems: process design and performance -- 3.1 Introduction -- 3.2 Classic Anaerobic Treatment Systems -- 3.2.1 The septic tank -- 3.2.2 The anaerobic lagoon -- 3.3 Modern Anaerobic Treatment Systems -- 3.3.1 The anaerobic contact process (ACP) -- 3.3.2 The anaerobic filter (AF) -- 3.3.3 Fluidized and expanded bed (FB, EB) -- 3.3.4 The upflow anaerobic sludge blanket reactor (UASB) -- 3.3.5 The anaerobic reactor with a fluidized sludge bed: (RALF) -- 3.3.6 Comparison of treatment systems -- 3.4 Properties of UASB Sludge.
3.4.1 Sludge composition -- 3.4.2 Biological sludge properties -- 3.4.3 Sludge settleability -- 3.5 Start-Up of UASB Reactors Treating Sewage -- 3.5.1 Start-up without seed sludge -- 3.5.2 Start-up procedures with seed sludge -- 3.6 Steady-State Behaviour -- 3.6.1 Effect of the feed COD concentration -- 3.6.2 Performance in terms of organic material removal -- 3.6.3 Volumetric loading rate -- 3.6.4 Sludge concentration profile -- 3.6.5 Specific sludge production -- 3.6.6 Specific organic sludge loading rate -- 3.6.7 Floating solids -- 3.7 Presence of Sulphate in Municipal Sewage -- 3.8 Influence of UASB Operation -- 3.8.1 Parallel versus series operation of UASB reactors -- 3.8.2 Excess sludge discharge strategy -- 3.8.3 Settleable solids return from the anaerobic effluent into the reactor -- 3.9 Key Process Design Parameters for UASB Reactor Performance -- 3.9.1 Influence of the GLS separator design quality on UASB performance -- 3.9.2 Empirical model for UASB performance based on sludge age -- 3.9.3 Temperature influence on the empirical model -- 3.10 Process Design Procedure using the Anaerobic Sludge Age -- 3.11 Productive Use of the Heating Potential from the Biogas -- Chapter 4: UASB reactor design guidelines -- 4.1 Introduction -- 4.2 Construction Aspects Affecting UASB Performance -- 4.2.1 Design and engineering issues -- 4.2.2 Operational and maintenance issues -- 4.2.3 Undeliverable expectations of UASB performance -- 4.3 Design Aspects of the UASB Reactor -- 4.3.1 Reactor dimensions -- 4.3.2 Gas-Liquid-Solid (GLS) separator -- 4.3.3 Biogas deflector -- 4.3.4 Influent distribution system -- 4.3.5 Effluent collection system -- 4.3.6 Sludge sampling and discharge -- 4.3.7 Scum removal -- 4.3.8 Biogas collection -- 4.3.9 Reactor cover and ventilation -- 4.4 Reactor Design Procedure -- 4.5 Anaerobic Reactor with External Settler.
4.6 Small-Scale UASB Designs -- 4.6.1 UASBb with two bi-phase separators -- 4.6.2 UASBc with conical three-phase separator -- 4.6.3 Geometry of the three phase separator UASBr -- Chapter 5: Value and stability of the pH in anaerobic digesters -- 5.1 Introduction -- 5.2 Weak Acid-Base Systems -- 5.3 Buffer Index -- 5.4 The Carbonic System -- 5.4.1 Alkalinity -- 5.4.2 Acidity -- 5.4.3 Ionic equilibrium -- 5.4.4 Measuring alkalinity -- 5.5 Reactor pH and Alkalinity Demand -- 5.5.1 Mass balance of inorganic carbon and methane -- 5.5.2 pH calculation in buffered wastewaters -- 5.5.3 Alkalinity demand in wastewaters without enough buffer capacity -- 5.6 Phase Equilibria in Anaerobic Digesters -- 5.6.1 Liquid-gas equilibrium -- 5.6.2 Liquid-solid equilibrium -- Chapter 6: Biogas generation in anaerobic digesters -- 6.1 Introduction -- 6.2 Solubility of Gases -- 6.3 Biogas Production -- 6.3.1 Methane production potential -- 6.3.2 Carbon dioxide -- 6.3.3 Water vapour -- 6.3.4 Nitrogen -- 6.3.5 Oxygen -- 6.3.6 Ammonium -- 6.3.7 Hydrogen sulphide -- 6.4 Calculation Procedure for Biogas Production and Composition -- 6.4.1 Low sulphate concentration -- 6.4.2 High sulphate concentration -- 6.5 Treatment of Sulphide Produced in Anaerobic Digesters -- 6.5.1 Sulphide in biogas -- 6.5.2 Sulphide removal from the effluent -- 6.5.3 Hydrogen sulphide in the air used for odour collection -- 6.6 Biogas Collection -- 6.7 Generation of Electrical Energy from Biogas -- 6.8 Greenhouse Gas Emissions and Carbon Footprint -- 6.9 Loss of Methane in the Effluent -- Chapter 7: Dewatering, Dehydration and drying of sludge -- 7.1 Introduction -- 7.2 Sludge Production and Composition -- 7.3 Mechanical Sludge Dehydration -- 7.3.1 Belt filter press -- 7.3.2 Decanter centrifuges -- 7.3.3 Filter press -- 7.4 Natural Sludge Drying -- 7.4.1 Types of sludge drying beds.
7.4.2 Experimental determination of required percolation and evaporation time of open sludge drying beds -- 7.4.3 Determination of time required for evaporation in covered beds -- 7.4.4 Determination of time required for evaporation in open beds with sludge tilling -- 7.4.5 Design and optimization of drying beds -- 7.5 Influence of Rainfall on Drying Bed Productivity -- 7.6 Thermal Sludge Drying and Incineration -- Chapter 8: Aerobic post-treatment of anaerobic effluents -- 8.1 Introduction -- 8.2 Types of Aerobic Treatment -- 8.2.1 Activated sludge systems (AS) -- 8.2.2 Biofilter (BF) -- 8.2.3 Submerged aerobic filter (SAF) -- 8.3 Modelling of Aerobic Post-Treatment -- 8.3.1 Steady-state AS model applied to aerobic post-treatment -- 8.3.2 Validation of the steady-state model for digested sewage -- 8.3.3 Modelling the sequential batch reactor (SBR) -- 8.3.4 Optimization procedure for aerobic post-treatment -- 8.4 Integration of the Combined Anaerobic-Aerobic Treatment System -- 8.4.1 Potential for reduction of total treatment volume -- 8.4.2 Feasibility of energy self-sufficiency -- 8.4.3 Potential for reduced sludge production -- 8.4.4 Feasibility of aerobic sludge stabilization in the anaerobic reactor -- 8.5 Nutrient Removal after Anaerobic Pre-Treatment -- 8.5.1 Nitrogen removal from effluent with low content of organic material -- 8.5.2 Phosphorus removal from effluent with low content of organic material -- Chapter 9: Post-treatment of digested sewage in polishing ponds -- 9.1 Introduction -- 9.2 Post-Treatment in Polishing Ponds -- 9.3 Pathogen Removal in Polishing Ponds -- 9.3.1 Kinetics of thermotolerant bacteria decay -- 9.3.2 Decay of thermotolerant bacteria in sequential batch ponds -- 9.4 Transfer Ponds -- 9.5 Factors that Influence the value of the Decay Constant -- 9.6 Organic Material and Suspended Solids Removal in Polishing Ponds.
9.7 pH Variation and Nitrogen Removal in Ponds -- 9.7.1 Carbon dioxide removal -- 9.7.2 Ammonium removal -- 9.7.3 Model of the kinetics of CO2 and NH3 removal by desorption -- 9.7.4 Experimental determination of the desorption constants for CO2 and NH3 -- 9.7.5 Model for pH in sequential batch polishing ponds -- 9.8 Phosphorus Removal in Polishing Ponds -- 9.9 Applicability of Polishing Ponds -- 9.9.1 Pre-treatment -- 9.9.2 Complementary treatment -- Chapter 10: Spreadsheet design of anaerobic and complementary treatment plants -- 10.1 Design of the UASB Reactor for Sewage Treatment -- 10.2 Design of the Biphasic UASB Reactor (UASBb) -- 10.3 Design of the UASB Reactor with Conical Separator (UASBc) -- 10.4 Design of the Conventional Reactor (UASBr) Including the Complementary Treatment Units -- 10.4.1 Block 1: Wastewater characterization -- 10.4.2 Block 2: Applied organic load and calculation of the anaerobic digestion efficiency -- 10.4.3 Block 3: Dimensioning of the UASB reactor and phase separator elements -- 10.4.4 Block 4: Design verification (lines 83-97, Table 10.10) -- 10.4.5 Block 5: Special devices in the UASB reactor (Lines 98-145, Table 10.11) -- 10.4.6 Block 6: Flow and composition of the generated biogas (lines 146-166, Table 10.12) -- 10.4.7 Block 7: Design of sludge drying beds -- 10.4.8 Block 8: Post-treatment of anaerobic effluent in polishing lagoons -- 10.4.9 Block 9: Post-treatment in the activated sludge system in SBR configuration -- 10.5 Application Examples -- Appendix A1: Anaerobic biodegradability, specific methanogenic activity and sludge stability -- Appendix A2: Sludge settleability -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Copyright -- Contents -- Preface -- Authors -- Acknowledgements -- Symbols and Abbreviations -- Contents in Brief -- Chapter 1: Sewage characteristics and treatment systems -- 1.1 Introduction -- 1.2 Impact of Inadequate Sewage Treatment -- 1.3 Effluent Standards and Treatment Objectives -- 1.4 Sewage Treatment Systems -- 1.4.1 Preliminary treatment -- 1.4.2 Primary treatment -- 1.4.3 Secondary treatment -- 1.4.4 Tertiary treatment -- 1.5 Sewage Characteristics -- 1.5.1 Flow rate -- 1.5.2 Measurement of organic material -- 1.6 Comparison of Measurement Parameters -- Chapter 2: Organic material &amp -- bacterial metabolism -- 2.1 Bacterial Metabolism -- 2.1.1 Anabolism -- 2.1.2 Oxidative catabolism -- 2.1.3 Fermentative catabolism or anaerobic digestion -- 2.2 Conversion Processes in Biological Treatment -- 2.2.1 Conversions in aerobic systems -- 2.2.2 Conversions in anaerobic systems -- 2.3 Anaerobic Digestion of Organic Material -- 2.3.1 Hydrolysis -- 2.3.2 Acidogenesis -- 2.3.3 Acetogenesis -- 2.3.4 Methanogenesis -- 2.3.5 Thermodynamic considerations -- 2.4 Competing Processes -- 2.5 Influence of Environmental Factors -- 2.5.1 Temperature -- 2.5.2 pH in the reactor -- 2.5.3 Toxic compounds and inhibitors -- 2.5.4 Nutrients -- 2.6 Mass Balance of Organic Material -- Chapter 3: Anaerobic sewage treatment systems: process design and performance -- 3.1 Introduction -- 3.2 Classic Anaerobic Treatment Systems -- 3.2.1 The septic tank -- 3.2.2 The anaerobic lagoon -- 3.3 Modern Anaerobic Treatment Systems -- 3.3.1 The anaerobic contact process (ACP) -- 3.3.2 The anaerobic filter (AF) -- 3.3.3 Fluidized and expanded bed (FB, EB) -- 3.3.4 The upflow anaerobic sludge blanket reactor (UASB) -- 3.3.5 The anaerobic reactor with a fluidized sludge bed: (RALF) -- 3.3.6 Comparison of treatment systems -- 3.4 Properties of UASB Sludge.

3.4.1 Sludge composition -- 3.4.2 Biological sludge properties -- 3.4.3 Sludge settleability -- 3.5 Start-Up of UASB Reactors Treating Sewage -- 3.5.1 Start-up without seed sludge -- 3.5.2 Start-up procedures with seed sludge -- 3.6 Steady-State Behaviour -- 3.6.1 Effect of the feed COD concentration -- 3.6.2 Performance in terms of organic material removal -- 3.6.3 Volumetric loading rate -- 3.6.4 Sludge concentration profile -- 3.6.5 Specific sludge production -- 3.6.6 Specific organic sludge loading rate -- 3.6.7 Floating solids -- 3.7 Presence of Sulphate in Municipal Sewage -- 3.8 Influence of UASB Operation -- 3.8.1 Parallel versus series operation of UASB reactors -- 3.8.2 Excess sludge discharge strategy -- 3.8.3 Settleable solids return from the anaerobic effluent into the reactor -- 3.9 Key Process Design Parameters for UASB Reactor Performance -- 3.9.1 Influence of the GLS separator design quality on UASB performance -- 3.9.2 Empirical model for UASB performance based on sludge age -- 3.9.3 Temperature influence on the empirical model -- 3.10 Process Design Procedure using the Anaerobic Sludge Age -- 3.11 Productive Use of the Heating Potential from the Biogas -- Chapter 4: UASB reactor design guidelines -- 4.1 Introduction -- 4.2 Construction Aspects Affecting UASB Performance -- 4.2.1 Design and engineering issues -- 4.2.2 Operational and maintenance issues -- 4.2.3 Undeliverable expectations of UASB performance -- 4.3 Design Aspects of the UASB Reactor -- 4.3.1 Reactor dimensions -- 4.3.2 Gas-Liquid-Solid (GLS) separator -- 4.3.3 Biogas deflector -- 4.3.4 Influent distribution system -- 4.3.5 Effluent collection system -- 4.3.6 Sludge sampling and discharge -- 4.3.7 Scum removal -- 4.3.8 Biogas collection -- 4.3.9 Reactor cover and ventilation -- 4.4 Reactor Design Procedure -- 4.5 Anaerobic Reactor with External Settler.

4.6 Small-Scale UASB Designs -- 4.6.1 UASBb with two bi-phase separators -- 4.6.2 UASBc with conical three-phase separator -- 4.6.3 Geometry of the three phase separator UASBr -- Chapter 5: Value and stability of the pH in anaerobic digesters -- 5.1 Introduction -- 5.2 Weak Acid-Base Systems -- 5.3 Buffer Index -- 5.4 The Carbonic System -- 5.4.1 Alkalinity -- 5.4.2 Acidity -- 5.4.3 Ionic equilibrium -- 5.4.4 Measuring alkalinity -- 5.5 Reactor pH and Alkalinity Demand -- 5.5.1 Mass balance of inorganic carbon and methane -- 5.5.2 pH calculation in buffered wastewaters -- 5.5.3 Alkalinity demand in wastewaters without enough buffer capacity -- 5.6 Phase Equilibria in Anaerobic Digesters -- 5.6.1 Liquid-gas equilibrium -- 5.6.2 Liquid-solid equilibrium -- Chapter 6: Biogas generation in anaerobic digesters -- 6.1 Introduction -- 6.2 Solubility of Gases -- 6.3 Biogas Production -- 6.3.1 Methane production potential -- 6.3.2 Carbon dioxide -- 6.3.3 Water vapour -- 6.3.4 Nitrogen -- 6.3.5 Oxygen -- 6.3.6 Ammonium -- 6.3.7 Hydrogen sulphide -- 6.4 Calculation Procedure for Biogas Production and Composition -- 6.4.1 Low sulphate concentration -- 6.4.2 High sulphate concentration -- 6.5 Treatment of Sulphide Produced in Anaerobic Digesters -- 6.5.1 Sulphide in biogas -- 6.5.2 Sulphide removal from the effluent -- 6.5.3 Hydrogen sulphide in the air used for odour collection -- 6.6 Biogas Collection -- 6.7 Generation of Electrical Energy from Biogas -- 6.8 Greenhouse Gas Emissions and Carbon Footprint -- 6.9 Loss of Methane in the Effluent -- Chapter 7: Dewatering, Dehydration and drying of sludge -- 7.1 Introduction -- 7.2 Sludge Production and Composition -- 7.3 Mechanical Sludge Dehydration -- 7.3.1 Belt filter press -- 7.3.2 Decanter centrifuges -- 7.3.3 Filter press -- 7.4 Natural Sludge Drying -- 7.4.1 Types of sludge drying beds.

7.4.2 Experimental determination of required percolation and evaporation time of open sludge drying beds -- 7.4.3 Determination of time required for evaporation in covered beds -- 7.4.4 Determination of time required for evaporation in open beds with sludge tilling -- 7.4.5 Design and optimization of drying beds -- 7.5 Influence of Rainfall on Drying Bed Productivity -- 7.6 Thermal Sludge Drying and Incineration -- Chapter 8: Aerobic post-treatment of anaerobic effluents -- 8.1 Introduction -- 8.2 Types of Aerobic Treatment -- 8.2.1 Activated sludge systems (AS) -- 8.2.2 Biofilter (BF) -- 8.2.3 Submerged aerobic filter (SAF) -- 8.3 Modelling of Aerobic Post-Treatment -- 8.3.1 Steady-state AS model applied to aerobic post-treatment -- 8.3.2 Validation of the steady-state model for digested sewage -- 8.3.3 Modelling the sequential batch reactor (SBR) -- 8.3.4 Optimization procedure for aerobic post-treatment -- 8.4 Integration of the Combined Anaerobic-Aerobic Treatment System -- 8.4.1 Potential for reduction of total treatment volume -- 8.4.2 Feasibility of energy self-sufficiency -- 8.4.3 Potential for reduced sludge production -- 8.4.4 Feasibility of aerobic sludge stabilization in the anaerobic reactor -- 8.5 Nutrient Removal after Anaerobic Pre-Treatment -- 8.5.1 Nitrogen removal from effluent with low content of organic material -- 8.5.2 Phosphorus removal from effluent with low content of organic material -- Chapter 9: Post-treatment of digested sewage in polishing ponds -- 9.1 Introduction -- 9.2 Post-Treatment in Polishing Ponds -- 9.3 Pathogen Removal in Polishing Ponds -- 9.3.1 Kinetics of thermotolerant bacteria decay -- 9.3.2 Decay of thermotolerant bacteria in sequential batch ponds -- 9.4 Transfer Ponds -- 9.5 Factors that Influence the value of the Decay Constant -- 9.6 Organic Material and Suspended Solids Removal in Polishing Ponds.

9.7 pH Variation and Nitrogen Removal in Ponds -- 9.7.1 Carbon dioxide removal -- 9.7.2 Ammonium removal -- 9.7.3 Model of the kinetics of CO2 and NH3 removal by desorption -- 9.7.4 Experimental determination of the desorption constants for CO2 and NH3 -- 9.7.5 Model for pH in sequential batch polishing ponds -- 9.8 Phosphorus Removal in Polishing Ponds -- 9.9 Applicability of Polishing Ponds -- 9.9.1 Pre-treatment -- 9.9.2 Complementary treatment -- Chapter 10: Spreadsheet design of anaerobic and complementary treatment plants -- 10.1 Design of the UASB Reactor for Sewage Treatment -- 10.2 Design of the Biphasic UASB Reactor (UASBb) -- 10.3 Design of the UASB Reactor with Conical Separator (UASBc) -- 10.4 Design of the Conventional Reactor (UASBr) Including the Complementary Treatment Units -- 10.4.1 Block 1: Wastewater characterization -- 10.4.2 Block 2: Applied organic load and calculation of the anaerobic digestion efficiency -- 10.4.3 Block 3: Dimensioning of the UASB reactor and phase separator elements -- 10.4.4 Block 4: Design verification (lines 83-97, Table 10.10) -- 10.4.5 Block 5: Special devices in the UASB reactor (Lines 98-145, Table 10.11) -- 10.4.6 Block 6: Flow and composition of the generated biogas (lines 146-166, Table 10.12) -- 10.4.7 Block 7: Design of sludge drying beds -- 10.4.8 Block 8: Post-treatment of anaerobic effluent in polishing lagoons -- 10.4.9 Block 9: Post-treatment in the activated sludge system in SBR configuration -- 10.5 Application Examples -- Appendix A1: Anaerobic biodegradability, specific methanogenic activity and sludge stability -- Appendix A2: Sludge settleability -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.