ORPP logo
Image from Google Jackets

Energy Storage : A New Approach.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 2nd edDescription: 1 online resource (366 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119083962
Subject(s): Genre/Form: Additional physical formats: Print version:: Energy StorageDDC classification:
  • 621.3126
LOC classification:
  • TJ165 .Z586 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface to Second Edition -- Acknowledgements to First Edition -- Acknowledgements to Second Edition -- 1 Introduction -- 1.1 The Energy Problem -- 1.1.1 Increasing Population and Energy Consumption -- 1.1.2 The Greenhouse Effect -- 1.1.3 Energy Portability -- 1.2 The Purposes of Energy Storage -- 1.3 Types of Energy Storage -- 1.4 Sources of Energy -- 1.5 Overview of this Book -- 2 Fundamentals of Energy -- 2.1 Classical Mechanics and Mechanical Energy -- 2.1.1 The Concept of Energy -- 2.1.2 Kinetic Energy -- 2.1.3 Gravitational Potential Energy -- 2.1.4 Elastic Potential Energy -- 2.2 Electrical Energy -- 2.3 Chemical Energy -- 2.3.1 Nucleosynthesis and the Origin of Elements -- 2.3.2 Breaking and Forming the Chemical Bonds -- 2.3.3 Chemical vs. Electrochemical Reactions -- 2.3.4 Hydrogen -- 2.4 Thermal Energy -- 2.4.1 Temperature -- 2.4.2 Thermal Energy Storage Types -- 2.4.3 Phase Change Materials -- 3 Conversion and Storage -- 3.1 Availability of Solar Energy -- 3.2 Conversion Processes -- 3.2.1 Photovoltaic Conversion Process -- 3.2.2 Thermoelectric Effects: Seebeck and Peltier -- 3.2.3 Multiple P-N Cell Structure Shown with Heat -- 3.2.4 Early Examples of Thermoelectric Generators -- 3.2.5 Thermionic Converter -- 3.2.6 Thermogalvanic Conversion -- 3.3 Storage Processes -- 3.3.1 Redox Full-Flow Electrolyte Systems -- 3.3.2 Full Flow and Static Electrolyte System Comparisons -- 4 Practical Purposes of Energy Storage -- 4.1 The Need for Storage -- 4.2 The Need for Secondary Energy Systems -- 4.2.1 Comparisons and Background Information -- 4.3 Sizing Power Requirements of Familiar Activities -- 4.3.1 Examples of Directly Available Human Manual Power Mechanically Unaided -- 4.3.1.1 Arm Throwing -- 4.3.1.2 Vehicle Propulsion by Human Powered Leg Muscles.
4.3.1.3 Mechanical Storage: Archer's Bow and Arrow -- 4.4 On-the-Road Vehicles -- 4.4.1 Land Vehicle Propulsion Requirements Summary -- 4.5 Rocket Propulsion Energy Needs Comparison -- 5 Competing Storage Methods -- 5.1 Problems with Batteries -- 5.2 Hydrocarbon Fuel: Energy Density Data -- 5.3 Electrochemical Cells -- 5.4 Metal-Halogen and Half-Redox Couples -- 5.5 Full Redox Couples -- 5.6 Possible Applications -- 6 The Concentration Cell -- 6.1 Colligative Properties of Matter -- 6.2 Electrochemical Application of Colligative Properties -- 6.2.1 Compressed Gas -- 6.2.2 Osmosis -- 6.2.3 Electrostatic Capacitor -- 6.2.4 Concentration Cells: CIR (Common Ion Redox) -- 6.3 Further Discussions on Fundamental Issues -- 6.4 Adsorption and Diffusion Rate Balance -- 6.5 Storage by Adsorption and Solids Precipitation -- 6.6 Some Interesting Aspects of Concentration Cells -- 6.7 Concentration Cell Storage Mechanisms that Employ Sulfur -- 6.8 Species Balance -- 6.9 Electrode Surface Potentials -- 6.10 Further Examination of Concentration Ratios -- 6.11 Empirical Results with Small Laboratory Cells -- 6.12 Iron/Iron Concentration Cell Properties -- 6.13 The Mechanisms of Energy Storage Cells -- 6.14 Operational Models of Sulfide Based Cells -- 6.15 Storage Solely in Bulk Electrolyte -- 6.16 More on Storage of Reagents in Adsorbed State -- 6.17 Energy Density -- 6.18 Observations Regarding Electrical Behavior -- 6.19 Concluding Comments -- 6.20 Typical Performance Characteristics -- 6.21 Sulfide/Sulfur Half Cell Balance -- 6.22 General Cell Attributes -- 6.23 Electrolyte Information -- 6.24 Concentration Cell Mechanism and Associated Mathematics -- 6.25 Calculated Performance Data -- 6.26 Another S/S-2 Cell Balance Analysis Method -- 6.27 A Different Example of a Concentration Cell, Fe+2/Fe+3 -- 6.28 Performance Calculations Based on Nernst Potentials.
6.28.1 Constant Current Discharge -- 6.28.2 Constant Power Discharge -- 6.29 Empirical Data -- 7 Thermodynamics of Concentration Cells -- 7.1 Thermodynamic Background -- 7.2 The CIR Cell -- 8 Polysulfide - Diffusion Analysis -- 8.1 Polarization Voltages and Thermodynamics -- 8.2 Diffusion and Transport Processes at the (-) Electrode Surface -- 8.3 Electrode Surface Properties, Holes, and Pores -- 8.4 Electric (Ionic) Current Density Estimates -- 8.5 Diffusion and Supply of Reagents -- 8.6 Cell Dynamics -- 8.6.1 Electrode Processes Analyses -- 8.6.2 Polymeric Number Change -- 8.7 Further Analysis of Electrode Behavior -- 8.7.1 Flat Electrode with Some Storage Properties -- 8.8 Assessing the Values of Reagent Concentrations -- 8.9 Solving the Differential Equations -- 8.10 Cell and Negative Electrode Performance Analysis -- 8.11 General Comments -- 9 Design Considerations -- 9.1 Examination of Diffusion and Reaction Rates and Cell Design -- 9.2 Electrodes -- 9.3 Physical Spacing in Cell Designs -- 9.3.1 Electrode Structures -- 9.4 Carbon-Polymer Composite Electrodes -- 9.4.1 Particle Shapes and Sizes -- 9.4.2 Metal to Carbon Resistance -- 9.4.3 Cell Spacing -- 9.5 Resistance Measurements in Test Cells -- 9.6 Electrolytes and Membranes -- 9.7 Energy and Power Density Compromises -- 9.8 Overcharging Effects on Cells -- 9.9 Imbalance Considerations -- 10 Electrolytes, Separators, and Membranes -- 10.1 Electrolyte Classifications -- 10.2 Ionic Conductivity -- 10.2.1 Measurement Techniques -- 10.2.2 Nyquist Plot Circuit Fitting -- 10.3 Ion Conduction Theory -- 10.3.1 Ion Conduction in Liquid Electrolytes -- 10.3.2 Ion Conduction in Polymer Electrolytes -- 10.3.3 Ion Conduction in Ceramic Electrolytes -- 10.4 Factors Affecting Ion Conductivity -- 10.5 Transference Number -- 10.6 Electrolytes for Lithium Ion Batteries -- 10.6.1 Liquid Electrolytes.
10.6.1.1 Non-Aqueous Electrolytes -- 10.6.1.2 Aqueous Electrolytes -- 10.6.2 Solid and Quasi-Solid Electrolytes -- 10.6.2.1 Polymer Electrolytes -- 10.6.2.2 Ceramic Electrolytes -- 10.7 Electrolytes for Supercapacitors -- 10.8 Electrolytes for Fuel Cells -- 10.9 Fillers and Additives -- 11 Single Cell Empirical Data -- 11.1 Design and Construction of Cells and the Materials Employed -- 11.2 Experimental Data -- 12 Conclusions and Future Trends -- 12.1 Future of Energy Storage -- 12.2 Flexible and Stretchable Energy Storage Devices -- 12.3 Self-Charging Energy Storage Devices -- 12.4 Recovering Wasted Energy -- 12.5 Recycling Energy Storage Devices -- 12.6 New Chemistry for Electrochemical Cells -- 12.7 Non-Electrochemical Energy Storage -- 12.8 Concentration Cells -- 12.8.1 Pros and Cons of Concentration Cells -- 12.8.2 Future Performance and Limitations -- Appendix 1 -- Appendix 2 -- Bibliography -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Contents -- Preface to Second Edition -- Acknowledgements to First Edition -- Acknowledgements to Second Edition -- 1 Introduction -- 1.1 The Energy Problem -- 1.1.1 Increasing Population and Energy Consumption -- 1.1.2 The Greenhouse Effect -- 1.1.3 Energy Portability -- 1.2 The Purposes of Energy Storage -- 1.3 Types of Energy Storage -- 1.4 Sources of Energy -- 1.5 Overview of this Book -- 2 Fundamentals of Energy -- 2.1 Classical Mechanics and Mechanical Energy -- 2.1.1 The Concept of Energy -- 2.1.2 Kinetic Energy -- 2.1.3 Gravitational Potential Energy -- 2.1.4 Elastic Potential Energy -- 2.2 Electrical Energy -- 2.3 Chemical Energy -- 2.3.1 Nucleosynthesis and the Origin of Elements -- 2.3.2 Breaking and Forming the Chemical Bonds -- 2.3.3 Chemical vs. Electrochemical Reactions -- 2.3.4 Hydrogen -- 2.4 Thermal Energy -- 2.4.1 Temperature -- 2.4.2 Thermal Energy Storage Types -- 2.4.3 Phase Change Materials -- 3 Conversion and Storage -- 3.1 Availability of Solar Energy -- 3.2 Conversion Processes -- 3.2.1 Photovoltaic Conversion Process -- 3.2.2 Thermoelectric Effects: Seebeck and Peltier -- 3.2.3 Multiple P-N Cell Structure Shown with Heat -- 3.2.4 Early Examples of Thermoelectric Generators -- 3.2.5 Thermionic Converter -- 3.2.6 Thermogalvanic Conversion -- 3.3 Storage Processes -- 3.3.1 Redox Full-Flow Electrolyte Systems -- 3.3.2 Full Flow and Static Electrolyte System Comparisons -- 4 Practical Purposes of Energy Storage -- 4.1 The Need for Storage -- 4.2 The Need for Secondary Energy Systems -- 4.2.1 Comparisons and Background Information -- 4.3 Sizing Power Requirements of Familiar Activities -- 4.3.1 Examples of Directly Available Human Manual Power Mechanically Unaided -- 4.3.1.1 Arm Throwing -- 4.3.1.2 Vehicle Propulsion by Human Powered Leg Muscles.

4.3.1.3 Mechanical Storage: Archer's Bow and Arrow -- 4.4 On-the-Road Vehicles -- 4.4.1 Land Vehicle Propulsion Requirements Summary -- 4.5 Rocket Propulsion Energy Needs Comparison -- 5 Competing Storage Methods -- 5.1 Problems with Batteries -- 5.2 Hydrocarbon Fuel: Energy Density Data -- 5.3 Electrochemical Cells -- 5.4 Metal-Halogen and Half-Redox Couples -- 5.5 Full Redox Couples -- 5.6 Possible Applications -- 6 The Concentration Cell -- 6.1 Colligative Properties of Matter -- 6.2 Electrochemical Application of Colligative Properties -- 6.2.1 Compressed Gas -- 6.2.2 Osmosis -- 6.2.3 Electrostatic Capacitor -- 6.2.4 Concentration Cells: CIR (Common Ion Redox) -- 6.3 Further Discussions on Fundamental Issues -- 6.4 Adsorption and Diffusion Rate Balance -- 6.5 Storage by Adsorption and Solids Precipitation -- 6.6 Some Interesting Aspects of Concentration Cells -- 6.7 Concentration Cell Storage Mechanisms that Employ Sulfur -- 6.8 Species Balance -- 6.9 Electrode Surface Potentials -- 6.10 Further Examination of Concentration Ratios -- 6.11 Empirical Results with Small Laboratory Cells -- 6.12 Iron/Iron Concentration Cell Properties -- 6.13 The Mechanisms of Energy Storage Cells -- 6.14 Operational Models of Sulfide Based Cells -- 6.15 Storage Solely in Bulk Electrolyte -- 6.16 More on Storage of Reagents in Adsorbed State -- 6.17 Energy Density -- 6.18 Observations Regarding Electrical Behavior -- 6.19 Concluding Comments -- 6.20 Typical Performance Characteristics -- 6.21 Sulfide/Sulfur Half Cell Balance -- 6.22 General Cell Attributes -- 6.23 Electrolyte Information -- 6.24 Concentration Cell Mechanism and Associated Mathematics -- 6.25 Calculated Performance Data -- 6.26 Another S/S-2 Cell Balance Analysis Method -- 6.27 A Different Example of a Concentration Cell, Fe+2/Fe+3 -- 6.28 Performance Calculations Based on Nernst Potentials.

6.28.1 Constant Current Discharge -- 6.28.2 Constant Power Discharge -- 6.29 Empirical Data -- 7 Thermodynamics of Concentration Cells -- 7.1 Thermodynamic Background -- 7.2 The CIR Cell -- 8 Polysulfide - Diffusion Analysis -- 8.1 Polarization Voltages and Thermodynamics -- 8.2 Diffusion and Transport Processes at the (-) Electrode Surface -- 8.3 Electrode Surface Properties, Holes, and Pores -- 8.4 Electric (Ionic) Current Density Estimates -- 8.5 Diffusion and Supply of Reagents -- 8.6 Cell Dynamics -- 8.6.1 Electrode Processes Analyses -- 8.6.2 Polymeric Number Change -- 8.7 Further Analysis of Electrode Behavior -- 8.7.1 Flat Electrode with Some Storage Properties -- 8.8 Assessing the Values of Reagent Concentrations -- 8.9 Solving the Differential Equations -- 8.10 Cell and Negative Electrode Performance Analysis -- 8.11 General Comments -- 9 Design Considerations -- 9.1 Examination of Diffusion and Reaction Rates and Cell Design -- 9.2 Electrodes -- 9.3 Physical Spacing in Cell Designs -- 9.3.1 Electrode Structures -- 9.4 Carbon-Polymer Composite Electrodes -- 9.4.1 Particle Shapes and Sizes -- 9.4.2 Metal to Carbon Resistance -- 9.4.3 Cell Spacing -- 9.5 Resistance Measurements in Test Cells -- 9.6 Electrolytes and Membranes -- 9.7 Energy and Power Density Compromises -- 9.8 Overcharging Effects on Cells -- 9.9 Imbalance Considerations -- 10 Electrolytes, Separators, and Membranes -- 10.1 Electrolyte Classifications -- 10.2 Ionic Conductivity -- 10.2.1 Measurement Techniques -- 10.2.2 Nyquist Plot Circuit Fitting -- 10.3 Ion Conduction Theory -- 10.3.1 Ion Conduction in Liquid Electrolytes -- 10.3.2 Ion Conduction in Polymer Electrolytes -- 10.3.3 Ion Conduction in Ceramic Electrolytes -- 10.4 Factors Affecting Ion Conductivity -- 10.5 Transference Number -- 10.6 Electrolytes for Lithium Ion Batteries -- 10.6.1 Liquid Electrolytes.

10.6.1.1 Non-Aqueous Electrolytes -- 10.6.1.2 Aqueous Electrolytes -- 10.6.2 Solid and Quasi-Solid Electrolytes -- 10.6.2.1 Polymer Electrolytes -- 10.6.2.2 Ceramic Electrolytes -- 10.7 Electrolytes for Supercapacitors -- 10.8 Electrolytes for Fuel Cells -- 10.9 Fillers and Additives -- 11 Single Cell Empirical Data -- 11.1 Design and Construction of Cells and the Materials Employed -- 11.2 Experimental Data -- 12 Conclusions and Future Trends -- 12.1 Future of Energy Storage -- 12.2 Flexible and Stretchable Energy Storage Devices -- 12.3 Self-Charging Energy Storage Devices -- 12.4 Recovering Wasted Energy -- 12.5 Recycling Energy Storage Devices -- 12.6 New Chemistry for Electrochemical Cells -- 12.7 Non-Electrochemical Energy Storage -- 12.8 Concentration Cells -- 12.8.1 Pros and Cons of Concentration Cells -- 12.8.2 Future Performance and Limitations -- Appendix 1 -- Appendix 2 -- Bibliography -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.