Multicomponent Reactions in Organic Synthesis.
Material type:
- text
- computer
- online resource
- 9783527678204
- 547.2
- QD262
Multicomponent Reactions in Organic Synthesis -- Contents -- List of Contributors -- Preface -- 1. General Introduction to MCRs: Past, Present, and Future -- 1.1 Introduction -- 1.2 Advances in Chemistry -- 1.3 Total Syntheses -- 1.4 Applications in Pharmaceutical and Agrochemical Industry -- 1.5 Materials -- 1.6 Outlook -- References -- 2. Discovery of MCRs -- 2.1 General Introduction -- 2.2 The Concept -- 2.3 The Reaction Design Concept -- 2.3.1 Single Reactant Replacement -- 2.3.2 Modular Reaction Sequences -- 2.3.3 Condition-Based Divergence -- 2.3.4 Union of MCRs -- 2.4 Multicomponent Reactions and Biocatalysis -- 2.4.1 Multicomponent Reactions and (Dynamic) Enzymatic Kinetic Resolution -- 2.4.2 Multicomponent Reactions and Enzymatic Desymmetrization -- 2.5 Multicomponent Reactions in Green Pharmaceutical Production -- 2.6 Conclusions -- Acknowledgments -- References -- 3. Aryne-Based Multicomponent Reactions -- 3.1 Introduction -- 3.2 Multicomponent Reactions of Arynes via Electrophilic Coupling -- 3.2.1 Multicomponent Reactions under Neutral Conditions -- 3.2.1.1 Isocyanide-Based Multicomponent Reactions -- 3.2.1.2 Imine-Based Multicomponent Reactions -- 3.2.1.3 Amine-Based Multicomponent Reactions -- 3.2.1.4 Carbonyl Compound-Based Multicomponent Reactions -- 3.2.1.5 Ether-Based Multicomponent Reactions -- 3.2.1.6 Miscellaneous -- 3.2.2 Multicomponent Reactions under Basic Conditions -- 3.3 Transition Metal-Catalyzed Multicomponent Reactions of Arynes -- 3.3.1 Annulations -- 3.3.2 Cross-Coupling-Type Reactions -- 3.3.3 Mizoroki-Heck-Type Reactions -- 3.3.4 Insertion into σ-Bond -- 3.4 Concluding Remarks -- References -- 4. Ugi-Smiles and Passerini-Smiles Couplings -- 4.1 Introduction -- 4.1.1 Carboxylic Acid Surrogates in Ugi Reactions -- 4.1.2 Smiles Rearrangements -- 4.2 Scope and Limitations -- 4.2.1 Phenols and Thiophenols.
4.2.2 Six-Membered Ring Hydroxy Heteroaromatics and Related Mercaptans -- 4.2.3 Five-Membered Ring Hydroxy Heteroaromatic and Related Mercaptans -- 4.2.4 Related Couplings with Enol Derivatives -- 4.2.5 The Joullié-Smiles Coupling -- 4.2.6 The Passerini-Smiles Reaction -- 4.3 Ugi-Smiles Postcondensations -- 4.3.1 Postcondensations Involving Reduction of the Nitro Group -- 4.3.2 Transformations of Ugi-Smiles Thioamides -- 4.3.3 Postcondensations Involving Transition Metal-Catalyzed Processes -- 4.3.4 Reactivity of the Peptidyl Unit -- 4.3.5 Radical Reactions -- 4.3.6 Cycloaddition -- 4.4 Conclusions -- References -- 5. 1,3-Dicarbonyls in Multicomponent Reactions -- 5.1 Introduction -- 5.2 Achiral and Racemic MCRs -- 5.2.1 Involving One Pronucleophilic Reactive Site -- 5.2.2 Involving Two Reactive Sites -- 5.2.2.1 Two Nucleophilic Sites -- 5.2.2.2 One Pronucleophilic Site and One Electrophilic Site -- 5.2.3 Involving Three Reactive Sites -- 5.2.4 Involving Four Reactive Sites -- 5.3 Enantioselective MCRs -- 5.3.1 Involving One Reactive Site -- 5.3.2 Involving Two Reactive Sites -- 5.3.3 Involving Three Reactive Sites -- 5.4 Conclusions and Outlook -- References -- 6. Functionalization of Heterocycles by MCRs -- 6.1 Introduction -- 6.2 Mannich-Type Reactions and Related Processes -- 6.3 β-Dicarbonyl Chemistry -- 6.4 Hetero-Diels-Alder Cycloadditions and Related Processes -- 6.5 Metal-Mediated Processes -- 6.6 Isocyanide-Based Reactions -- 6.7 Dipole-Mediated Processes -- 6.8 Conclusions -- Acknowledgments -- References -- 7. Diazoacetate and Related Metal-Stabilized Carbene Species in MCRs -- 7.1 Introduction -- 7.2 MCRs via Carbonyl or Azomethine Ylide-Involved 1,3-Dipolar Cycloadditions -- 7.2.1 Azomethine Ylide -- 7.2.2 Carbonyl Ylide -- 7.3 MCRs via Electrophilic Trapping of Protic Onium Ylides -- 7.3.1 Initial Development.
7.3.2 Asymmetric Examples -- 7.3.2.1 Chiral Reagent Induction -- 7.3.2.2 Chiral Dirhodium(II) Catalysis -- 7.3.2.3 Enantioselective Synergistic Catalysis -- 7.3.3 MCRs Followed by Tandem Cyclizations -- 7.4 MCRs via Electrophilic Trapping of Zwitterionic Intermediates -- 7.5 MCRs via Metal Carbene Migratory Insertion -- 7.6 Summary and Outlook -- References -- 8. Metal-Catalyzed Multicomponent Synthesis of Heterocycles -- 8.1 Introduction -- 8.2 Multicomponent Cross-Coupling and Carbonylation Reactions -- 8.2.1 Cyclization with Alkyne- or Alkene-Containing Nucleophiles -- 8.2.2 Cyclization via Palladium-Allyl Complexes -- 8.2.3 Fused-Ring Heterocycles for ortho-Substituted Arene Building Blocks -- 8.2.4 Multicomponent Cyclocarbonylations -- 8.2.5 Cyclization of Cross-Coupling Reaction Products -- 8.2.6 C‒H Functionalization in Multicomponent Reactions -- 8.3 Metallacycles in Multicomponent Reactions -- 8.4 Multicomponent Reactions via 1,3-Dipolar Cycloaddition -- 8.5 Concluding Remarks -- References -- 9. Macrocycles from Multicomponent Reactions -- 9.1 Introduction -- 9.2 IMCR-Based Macrocyclizations of Single Bifunctional Building Blocks -- 9.3 Multiple MCR-Based Macrocyclizations of Bifunctional Building Blocks -- 9.4 IMCR-Based Macrocyclizations of Trifunctionalized Building Blocks (MiB-3D) -- 9.5 Sequential IMCR-Based Macrocyclizations of Multiple Bifunctional Building Blocks -- 9.6 Final Remarks and Future Perspectives -- References -- 10. Multicomponent Reactions under Oxidative Conditions -- 10.1 Introduction -- 10.2 Multicomponent Reactions Involving In Situ Oxidation of One Substrate -- 10.2.1 Isocyanide-Based Multicomponent Reactions -- 10.2.1.1 Passerini Reactions -- 10.2.1.2 Ugi Reactions with In Situ Oxidation of Alcohols -- 10.2.1.3 Ugi Reaction with In Situ Oxidation of Secondary Amines.
10.2.1.4 Ugi-Smiles Reaction with In Situ Oxidation of Secondary Amines -- 10.2.1.5 Ugi-Type Reactions by In Situ Oxidation of Tertiary Amines -- 10.2.1.6 Synthesis of Other Derivatives -- 10.2.2 Other Multicomponent Reactions -- 10.3 Multicomponent Reactions Involving Oxidation of a Reaction Intermediate -- 10.3.1 Reactions without Transition Metal-Mediated Oxidation -- 10.3.2 Reactions Mediated by Transition Metal Catalysis -- 10.4 Multicomponent Reactions Involving Oxidants as Lewis Acids -- 10.5 Conclusions -- References -- 11. Allenes in Multicomponent Synthesis of Heterocycles -- 11.1 Introduction -- 11.2 Reactions with 1,2-Propadiene and Unactivated Allenes -- 11.2.1 Palladium-Catalyzed Multicomponent Reactions -- 11.2.2 Copper-, Nickel-, and Rhodium-Promoted Multicomponent Reactions -- 11.2.3 Multicomponent Reactions without Transition Metals -- 11.3 Reactions with Acceptor-Substituted Allenes -- 11.3.1 Catalyzed Multicomponent Reactions -- 11.3.2 Uncatalyzed Multicomponent Reactions -- 11.4 Reactions with Donor-Substituted Allenes -- 11.5 Conclusions -- List of Abbreviations -- References -- 12. Alkynes in Multicomponent Synthesis of Heterocycles -- 12.1 Introduction -- 12.2 σ-Nucleophilic Reactivity of Alkynes -- 12.2.1 Acetylide Additions to Electrophiles -- 12.2.1.1 Alkyne-Aldehyde-Amine Condensation - A-Coupling -- 12.2.1.2 Alkyne-(Hetero)Aryl Halide (Sonogashira) Coupling as Key Reaction -- 12.2.2 Conversion of Terminal Alkynes into Electrophiles as Key Reactions -- 12.3 π-Nucleophilic Reactivity of Alkynes -- 12.4 Alkynes as Electrophilic Partners -- 12.5 Alkynes in Cycloadditions -- 12.5.1 Alkynes as Dipolarophiles -- 12.5.2 Alkynes in Cu(I)-Catalyzed 1,3-Dipolar Azide-Alkyne Cycloaddition -- 12.5.3 Alkynes as Dienophiles in MCRs -- 12.6 Alkynes as Reaction Partners in Organometallic MCRs -- 12.7 Conclusions -- List of Abbreviations.
Acknowledgment -- References -- 13. Anhydride-Based Multicomponent Reactions -- 13.1 Introduction -- 13.2 Quinolones and Related Heterocycles from Homophthalic and Isatoic Anhydrides -- 13.2.1 Introduction: Reactivity of Homophthalic and Isatoic Anhydrides -- 13.2.2 Imine-Anhydride Reactions of Homophthalic Anhydride -- 13.2.3 MCRs Employing Homophthalic Anhydride -- 13.2.4 Imine-Anhydride Reactions of Isatoic Anhydride -- 13.3 α,β-Unsaturated Cyclic Anhydrides: MCRs Involving Conjugate Addition and Cycloaddition Reactions -- 13.3.1 Maleic Anhydride MCRs -- 13.3.2 MCRs of Itaconic Anhydrides -- 13.3.3 Diels-Alder Reactions -- 13.4 MCRs of Cyclic Anhydrides in Annulation Reactions and Related Processes -- 13.4.1 MCR-Based Annulations: Succinic and Phthalic Anhydrides -- 13.5 MCRs of Acyclic Anhydrides -- 13.6 Conclusions -- References -- 14. Free-Radical Multicomponent Processes -- 14.1 Introduction -- 14.2 MCRs Involving Addition Across Olefin C=C Bonds -- 14.2.1 Addition of Aryl Radicals to Olefins -- 14.2.2 MCRs Using Sulfonyl Derivatives as Terminal Trap -- 14.2.3 Carboallylation of Electron-Poor Olefins -- 14.2.4 Carbohydroxylation, Sulfenylation, and Phosphorylation of Olefins -- 14.2.5 Radical Addition to Olefins Using Photoredox Catalysis -- 14.2.6 MCRs Based on Radical-Polar Crossover Processes -- 14.3 Free-Radical Carbonylation -- 14.3.1 Alkyl Halide Carbonylation -- 14.3.2 Metal-Mediated Atom-Transfer Radical Carbonylation -- 14.3.3 Alkane Carbonylation -- 14.3.4 Miscellaneous Carbonylation Reactions -- 14.4 Free-Radical Oxygenation -- 14.5 MCRs Involving Addition Across π-C=N Bonds -- 14.5.1 Free-Radical Strecker Process -- 14.5.2 Free-Radical Mannich-Type Processes -- 14.6 Miscellaneous Free-Radical Multicomponent Reactions -- 14.7 Conclusions -- References -- 15. Chiral Phosphoric Acid-Catalyzed Asymmetric Multicomponent Reactions.
15.1 Introduction.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.