Variable Frequency Transformers for Large Scale Power Systems Interconnection : Theory and Applications.
Material type:
- text
- computer
- online resource
- 9781119129080
- 621.31/4
- TK2744 .C446 2018
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface to the English Version -- Preface -- Chapter 1 Power Grid Development and Interconnection -- 1.1 Overview -- 1.2 Energy Reform and the Third Generation of Power Grids -- 1.2.1 Objectives of Energy Reform and the Mission of Power Grid Development -- 1.2.2 Development and Upgrading of Power Grids -- 1.3 Large‐Scale Power Allocation and Large Power Grid Interconnection -- 1.3.1 The Necessity and Importance of Large Power Grid Interconnection -- 1.3.1.1 Power Grid Attributes -- 1.3.1.2 Grid Interconnection -- 1.3.1.3 Clean Energy and Grid Interconnection -- 1.3.1.4 Large Power Grid Interconnection is Required to Adapt to the Needs of Development of the Third Generation of Power Grids -- 1.3.1.5 Large Power Grid Interconnection is an Important Trend in World Power Grid Development -- 1.3.2 Development of Grid Interconnection Technology -- 1.3.2.1 AC Synchronous Interconnection -- 1.3.2.2 DC Asynchronous Interconnection -- 1.3.2.3 AC/DC Parallel Operation -- 1.3.2.4 VFT Asynchronous Interconnection -- 1.4 Main Content of this Book -- 1.5 Summary -- References -- Chapter 2 Proposal and Application of VFTs -- 2.1 Overview -- 2.2 VFT System Constitution -- 2.2.1 VFT Device -- 2.2.2 DC Rectification and Motor Drive -- 2.2.3 Step‐Down Transformer -- 2.2.4 Reactive Power Compensation Capacitor Bank -- 2.2.5 Circuit Breaker -- 2.3 Basic Functions of VFTs -- 2.3.1 Asynchronous Interconnection Function -- 2.3.2 Transmission Power Control -- 2.3.3 Frequency Regulation Function -- 2.3.4 Power Supply to Weak Systems -- 2.3.5 Black‐Start Power -- 2.3.6 Suppression of Low‐Frequency Power Oscillation -- 2.3.7 Power Emergency Regulation -- 2.4 Startup and Control of VFTs -- 2.4.1 Switching No‐Load VFTs -- 2.4.2 Adjusting Rotor Speed -- 2.4.3 Synchronizing Close -- 2.4.4 Power Regulation.
2.4.5 Capacitor Bank Switching -- 2.4.6 System Application Control -- 2.4.7 Failure Cleaning -- 2.5 VFT Mechanism for Improving System Stability -- 2.6 Existing VFT Applications in Power Systems -- 2.7 VFT Applications in Global Energy Interconnection -- 2.7.1 Introduction of Global Energy Interconnection (GEI) -- 2.7.1.1 Smart Grid -- 2.7.1.2 UHV Grid -- 2.7.1.3 Clean Energy -- 2.7.1.4 GEI -- 2.7.2 Potential Applications of VFTs in GEI Systems -- 2.7.2.1 Using VFTs to Loop‐off Electromagnetic‐looped Networks -- 2.7.2.2 Using VFTs to Realize the Marginal Interconnection of Asynchronous Grids -- 2.7.2.3 Using VFTs to Suppress System Low‐Frequency Oscillation -- 2.7.2.4 Using VFTs to Improve Operation Characteristics of an Unstable Power Supply -- 2.7.2.5 Using VFT to Connect Weak Grids to the Main Grid -- 2.7.2.6 Using VFTs to Optimize System Power Flow -- 2.8 Studying the Prominent Problems of VFTs to be Solved -- 2.8.1 Physical Parameters of VFTs -- 2.8.2 Basic Theory of VFTs -- 2.8.3 Simulation Tools for VFTs -- 2.8.4 Control Protection of VFTs -- 2.8.5 Development and Manufacturing of VFTs -- 2.8.6 System Application of VFTs -- 2.8.7 Technical Economy of VFTs -- 2.9 Summary -- References -- Chapter 3 Basic Equations and Simulation Models of VFTs -- 3.1 Overview -- 3.2 The Steady‐State Equation and the Power Flow Calculation Model of VFTs -- 3.2.1 Steady‐State Frequency Equation -- 3.2.2 Steady‐State Power Flow Equation -- 3.2.3 Power Flow Calculation Model -- 3.2.4 Using PSASP to Realize the VFT Power Flow Calculation Model -- 3.3 The Electromechanical Transient Equation and Simulation Model of VFTs -- 3.3.1 Electromechanical Transient Equation -- 3.3.2 Electromechanical Transient Model -- 3.3.3 Using PSASP to Realize the Electromechanical Transient Model of VFT -- 3.4 The Electromagnetic Transient Equation and Simulation Model of VFTs.
3.4.1 Electromagnetic Transient Equation -- 3.4.2 Electromagnetic Transient Model -- 3.5 Short‐Circuit Impedance and Calculation Model of VFTs -- 3.5.1 Short‐Circuit Impedance -- 3.5.2 Short‐Circuit Calculation Model -- 3.6 VFT Simulation Model Availability Verification -- 3.6.1 VFT Power Flow Calculation Model Verification -- 3.6.2 VFT Electromechanical Transient Model Verification -- 3.6.3 VFT Electromagnetic Transient Model Verification -- 3.7 Summary -- References -- Chapter 4 VFT Control System Research and Modeling -- 4.1 Overview -- 4.2 VFT Control Strategy and System Block Diagram -- 4.2.1 Element‐Level Control -- 4.2.2 Device‐Level Control -- 4.2.3 System‐Level Control -- 4.3 VFT Element‐Level Control and DC Drive System Design -- 4.3.1 Constitution of the VFT DC Motor Drive System -- 4.3.2 Basic Equations of the DC Motor Drive System -- 4.3.3 Trigger Control and Response Characteristics of the Rectifier Circuit -- 4.4 VFT Device‐Level Control Design -- 4.4.1 Rotor Speed Control -- 4.4.2 Active Power Control -- 4.4.3 Voltage Phase Angle Control -- 4.4.4 Synchronous Grid Connection Control -- 4.4.5 Reactive Voltage Control -- 4.5 VFT System‐Level Control Design -- 4.5.1 Optimize System Power Flow -- 4.5.2 Regulate System Frequency -- 4.5.3 Suppressing Low‐Frequency Oscillation -- 4.6 Summary -- References -- Chapter 5 Analysis of Operational Characteristics and Application of VFTs in the Electrical Power System -- 5.1 Overview -- 5.2 VFT Parameters and Research System Design -- 5.2.1 Basic Parameters of VFTs -- 5.2.2 Simplified Asynchronous Interconnection System -- 5.2.3 Typical Four‐Generator System -- 5.2.4 Large‐Scale Complex Power System -- 5.3 Startup and Power Regulation of VFTs -- 5.3.1 VFT Power‐On Process -- 5.3.2 VFT Grid Connection Process -- 5.3.3 VFT Power Regulation -- 5.4 Using VFTs to Regulate System Power Flow.
5.4.1 Optimizing the Power Flow Distribution of Interconnected Systems -- 5.4.2 Reducing System Power Transmission Loss -- 5.4.3 System Reactive Voltage Control -- 5.5 Characteristics of VFTs During a Fault Period -- 5.5.1 Single‐Phase Short‐Circuit Fault -- 5.5.2 Two‐Phase Short‐Circuit Fault -- 5.5.3 Three‐Phase Short‐Circuit Fault -- 5.6 Using VFTs to Regulate System Frequency -- 5.7 Using VFTs to Supply Power to Weak Power Grids and Passive Systems -- 5.7.1 Supplying Power to Weak Power Grids Losing Some Power -- 5.7.2 Supplying Power to Passive Systems -- 5.8 Application of VFTs in a Large Complex Electrical Power System -- 5.8.1 Power Flow Control of VFTs in the Complex Electrical Power System -- 5.8.2 Transient Stability of VFTs in a Complex Power System -- 5.9 Using VFTs to Suppress Low‐Frequency Power Oscillation in the Electrical Power System -- 5.10 Summary -- References -- Chapter 6 Design of an Adaptive Low‐Frequency Oscillation Damping Controller Based on a VFT -- 6.1 Overview -- 6.2 Impacts of the Variable‐Frequency Oscillations of Power Systems and Corresponding Control Actions -- 6.3 Prony Method‐Based Transfer Function Identification -- 6.4 Low‐Frequency Oscillation Damping Controller Design with VFTs and a Prony Method -- 6.5 Application of a VFT‐Based Adaptive Damping Controllers in a Four‐Generator Power System -- 6.5.1 System Overview -- 6.5.2 Transfer Function Identification -- 6.5.3 Design of the Damping Controller -- 6.5.4 Application Effect of the Damping Controller -- 6.5.5 Parameter Design and Damping Effect of the Damping Controller After a Structural Change of the Power System -- 6.5.6 Adaptability of Power System Mode Identification with the Prony Method -- 6.6 Application of VFT‐Based Adaptive Damping Controllers in Complicated Power Systems -- 6.6.1 Power System Overview -- 6.6.2 Transfer Function Identification.
6.6.3 Design of the Damping Controller -- 6.6.4 Simulation of Application Effect of the Damping Controller in a Large Power System -- 6.6.5 Parameter Design and Damping Effect of the Damping Controller After a Change of the Power System -- 6.7 Summary -- References -- Chapter 7 Technical and Economic Characteristics of VFTs -- 7.1 Overview -- 7.2 Comparison of the Technical and Economic Characteristics of VFTs and Phase‐Shifting Transformers -- 7.2.1 Phase‐Shifting Transformers -- 7.2.2 Structures and Types of Phase‐Shifting Transformers -- 7.2.3 A Comprehensive Comparison of VFTs and Phase‐Shifting Transformers -- 7.3 Comparison of the Technical and Economic Characteristics of VFTs and DC Transmission Systems -- 7.3.1 DC Transmission Systems -- 7.3.2 Development and Types of DC Transmission Systems -- 7.3.3 A Comprehensive Comparison of VFTs and DC Transmission Systems -- 7.4 Summary -- References -- Chapter 8 Summary and Prospects -- 8.1 Overview -- 8.2 Main Conclusions -- 8.2.1 Structure of a VFT System -- 8.2.2 Operating Principle of a VFT -- 8.2.3 Simulation Technologies of VFTs -- 8.2.4 Control Technologies of VFTs -- 8.2.5 System Characteristics of VFTs -- 8.2.6 Low‐Frequency Oscillation Suppression by VFTs -- 8.2.7 Technical and Economic Characteristics of VFTs -- 8.3 In‐Depth Studies of VFTs -- 8.3.1 Structure Design of VFTs -- 8.3.2 Control Study of VFTs -- 8.3.3 Simulation Tools of VFTs -- 8.3.4 Application of VFTs in Projects -- Appendix A Application of VFTs in Projects -- A.1 Overview -- A.2 Main Structure and Systematic Control of a VFT -- A.3 The World's First VFT Station: Langlois Substation -- A.4 The World's Second VFT Station: Laredo Substation -- A.5 The World's Third VFT Station: Linden Substation -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.