Concrete-Filled Tubular Members and Connections.
Material type:
- text
- computer
- online resource
- 9781482266085
- 624.1/83425
- TA683.5.C7 .Z48 2013
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Notation -- Chapter 1: Introduction -- 1.1 Applications of Concrete-Filled Steel Tubes -- 1.2 Advantages of Concrete-Filled Steel Tubes -- 1.3 Current Knowledge on CFST Structures -- 1.3.1 Related Publications -- 1.3.2 International Standards -- 1.4 Layout of the Book -- 1.5 References -- Chapter 2: Material Properties and Limit States Design -- 2.1 Material Properties -- 2.1.1 Steel Tubes -- 2.1.2 Concrete -- 2.2 Limit States Design -- 2.2.1 Ultimate Strength Limit State -- 2.2.2 Service ability Limit State -- 2.3 References -- Chapter 3: CFST Members Subjected to Bending -- 3.1 Introduction -- 3.2 Local Buckling and Section Capacity -- 3.2.1 Local Buckling and Classification of Cross-Sections -- 3.2.2 Stress Distribution -- 3.2.3 Derivation of Plastic Moment Capacity -- 3.2.4 Design Rules for Strength -- 3.2.5 Comparison of Specifications -- 3.2.6 Examples -- 3.3 MemberCapacity -- 3.3.1 Flexural-Torsional Buckling -- 3.3.2 Effect of Concrete-Fillingon Flexural-Torsional Buckling Capacity -- 3.4 References -- Chapter 4: CFST Members Subjected to Compression -- 4.1 General -- 4.2 Section Capacity -- 4.2.1 Local Buckling in Compression -- 4.2.2 Confinement of Concrete -- 4.2.3 Design Section Capacity -- 4.2.4 Examples -- 4.3 Member Capacity -- 4.3.1 Interaction of Local and Over all Buckling -- 4.3.2 Column Curves -- 4.3.3 Design Member Capacity -- 4.3.4 Examples -- 4.4 References -- Chapter 5: CFST Members Subjected to Combined Actions -- 5.1 General -- 5.2 Stress Distribution in CFST Members Subjected to Combined Bending and Compression -- 5.3 Design Rules -- 5.3.1 BS5400-5: 2005 -- 5.3.2 DBJ13-51 -- 5.3.3 Eurocode 4 -- 5.3.4 Comparison of Codes -- 5.4 Examples -- 5.4.1 Example 1 CFST SHS -- 5.4.2 Example 2 CFST CHS -- 5.5 Combined Loads Involving Torsionor Shear.
5.5.1 Compression and Torsion -- 5.5.2 Bending and Torsion -- 5.5.3 Compression, Bending and Torsion -- 5.5.4 Compression, Bending and Shear -- 5.5.5 Compression, Bending, Torsion and Shear -- 5.6 References -- Chapter 6: Seismic Performance of CFST Members -- 6.1 General -- 6.2 Influence of Cyclic Loading on Strength -- 6.2.1 CFST Beams -- 6.2.2 CFST Braces -- 6.2.3 CFST Beam-Columns -- 6.3 Ductility -- 6.3.1 DuctilityRatio(?) -- 6.3.2 Parameters Affecting the Ductility Ratio(?) -- 6.3.3 Some Measures to Ensure Sufficient Ductility -- 6.4 Parameters Affecting Hysteretic Behaviour -- 6.4.1 Moment (M) versus Curvature (I) Responses -- 6.4.2 Lateral Load (P) versus Lateral Deflection (?) Responses -- 6.5 Simplified Hysteretic Models -- 6.5.1 Simplified Model of the Moment-Curvature Hysteretic Relationship -- 6.5.2 Simplified Model of the Load-Deflection Hysteretic Relationship -- 6.5.3 Simplified Model of the Ductility Ratio (?) -- 6.6 References -- Chapter 7: Fire Resistance of CFST Members -- 7.1 General -- 7.2 Parameters Affecting Fire Resistance -- 7.3 Fire Resistance Design -- 7.3.1 Chinese Code DBJ13-51 -- 7.3.2 CIDECT Design Guide No.4 -- 7.3.3 Eurocode 4 Part1.2 -- 7.3.4 North American Approach -- 7.3.5 Comparison of Different Approaches -- 7.4 Examples -- 7.4.1 Column Design -- 7.4.2 Real Projects -- 7.5 Post-Fire Performance -- 7.6 Repairing After Exposure to Fire -- 7.7 References -- Chapter 8: CFST Connections -- 8.1 General -- 8.2 Classification of Connections -- 8.3 Typical CFST Connections -- 8.3.1 Simple Connections -- 8.3.2 Semi-Rigid Connections -- 8.3.3 Rigid Connections -- 8.4 Design Rules -- 8.4.1 General -- 8.4.2 Design of Simple Connections -- 8.4.3 Design of Rigid Connections -- 8.4.4 Bond Strength -- 8.5 Examples -- 8.5.1 Example 1 Simple Connection -- 8.5.2 Example 2 Rigid Connection -- 8.6 More Recent CFST Connections.
8.6.1 Blind Bolt Connections -- 8.6.2 Reduced Beam Section (RBS) Connections -- 8.6.3 CFST Connections for Fatigue Application -- 8.7 References -- Chapter 9: New Developments -- 9.1 Long-Term Load Effect -- 9.2 Some Construction-Related Issues -- 9.2.1 Effects of Local Compression -- 9.2.2 Pre-Load Effect -- 9.3 SCC (Self-Consolidating Concrete)-Filled Tubes -- 9.4 Concrete-Filled Double Skin Tubes -- 9.4.1 General -- 9.4.2 CFDST Members Subjected to Static Loading -- 9.4.3 CFDST Members Subjected to Dynamic Loading -- 9.4.4 CFDST Members Subjected to Fire -- 9.5 FRP (Fibre Reinforced Polymer) Confined CFST -- 9.6 References -- Index.
Concrete-filled steel tubes are a common example of a concrete-steel composite structure, and are particularly useful as columns in high-rise buildings and bridge piers. They can be used in a range of fields, from civil and industrial construction through to the mining industry. This volume explores several aspects of concrete-filled tubes, including construction methods and quality and their effect on performance; confinement; the effects of creep, pre-load, and size; and seismic and post-fire behavior. It also examines mechanics models and concrete-filled double skin tubes and includes worked examples under practical conditions and numerical simulations.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.