ORPP logo
Image from Google Jackets

Artificially Intelligent Nanomaterials for Environmental Engineering.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2020Copyright date: ©2019Edition: 1st edDescription: 1 online resource (332 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527816385
Subject(s): Genre/Form: Additional physical formats: Print version:: Artificially Intelligent Nanomaterials for Environmental EngineeringLOC classification:
  • TA170 .W364 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Global Challenges -- 1.2 Conventional Technologies in Environmental Science and Engineering -- 1.3 Nanotechnology -- 1.3.1 History of Nanotechnology Evolution -- 1.3.2 Concept and Definition -- 1.3.3 Fields of Current Applications -- 1.3.4 Nanotechnology in Environmental Engineering -- 1.4 Artificially Intelligent Materials -- 1.4.1 Artificial Intelligence (AI) and Nanotechnology -- 1.4.2 Examples of Artificially Intelligent Nanomaterials -- 1.4.2.1 Energy Nanogenerator/Nanosensor (Piezoelectric/Triboelectric Materials) -- 1.4.2.2 Shape‐Memory Materials -- 1.4.2.3 Actuator -- 1.5 Intelligent Environmental Nanomaterials -- 1.5.1 Overview -- 1.5.2 Self‐Propelled Nanomotors -- 1.5.3 Intelligent Gating Membrane -- 1.5.4 Switchable Oil/Water Separation -- 1.5.5 Self‐Healing Environmental Materials -- 1.5.6 Molecular Imprinting -- 1.5.7 Nanofibrous Membrane Air Filters -- 1.6 Introduction to the Book Chapters -- References -- Chapter 2 Fundamental Mechanisms of Intelligent Responsiveness -- 2.1 Overview of Intelligent Responsiveness -- 2.2 Responsiveness in the Polymer System -- 2.3 Thermoresponsiveness -- 2.3.1 LCST Thermoresponsiveness -- 2.3.2 UCST Thermoresponsiveness -- 2.3.2.1 Coulomb Interaction‐Induced UCST Polymers (Polyzwitterions) -- 2.3.2.2 Hydrogen Bonding‐Induced UCST Polymers -- 2.4 pH Responsiveness -- 2.4.1 pH‐Responsive Basic Polymers -- 2.4.2 pH‐Responsive Acidic Polymers -- 2.5 Photo‐responsiveness -- 2.5.1 Azobenzene and Its Derivatives -- 2.5.2 Spiropyran‐Based Polymers -- 2.5.3 Inorganic Photo‐Responsive Materials -- 2.6 Metalic Ion Responsiveness -- 2.6.1 Poly(NIPAM‐co‐AAB18C6) -- 2.6.2 Poly(NIPAM‐co‐AAB15C5) (15‐Crown‐5) -- 2.7 Ion Strength Responsiveness -- 2.8 Redox Responsiveness -- 2.9 Multi‐responsiveness.
2.9.1 Dual Stimuli‐Responsive Polymers -- 2.9.1.1 Thermo‐ and Photo‐Responsive Polymers -- 2.9.1.2 Thermo‐ and pH‐Responsive Polymers -- 2.9.1.3 Thermo‐ and Redox‐Responsive Polymers -- 2.9.2 Multi‐Stimuli‐Responsive Polymers -- 2.9.2.1 Thermo‐, Photo‐, and pH‐Responsive Polymers -- 2.9.2.2 Thermo‐, Photo‐, and Redox‐Responsive Polymers -- 2.10 Conclusion -- References -- Chapter 3 Filtration Membranes with Responsive Gates -- 3.1 Membrane Separation for Water Purification and Desalination -- 3.2 Emerging Design and Concept of Filtration Membranes with Responsive and Intelligent Gates -- 3.3 Fabrication Methods of Intelligent Gating Membranes -- 3.3.1 Post‐Modification Method -- 3.3.2 One‐Step Formation Method -- 3.4 Application of Intelligent Gating Membranes to Environmental Separation -- 3.5 Thermoresponsiveness -- 3.6 pH Responsiveness -- 3.6.1 Polybase Gating Membranes -- 3.6.2 Polyacid Gating Membrane -- 3.7 Photo‐responsiveness -- 3.7.1 Azobenzene‐Based Gating Membranes -- 3.7.2 Spiropyran‐Based Gating Membranes -- 3.8 Metallic Ion Responsiveness -- 3.9 Redox Responsiveness -- 3.10 Ion Strength Responsiveness -- 3.11 Dual and Multi‐Stimuli Responsiveness -- 3.11.1 pH and Temperature Dual Responsiveness -- 3.11.2 Temperature and Ion Strength Dual Responsiveness -- 3.11.3 pH and Ion Strength Dual Responsiveness -- 3.11.4 Temperature, pH, and Ion Strength Multi‐responsiveness -- 3.12 Conclusions -- References -- Chapter 4 Switchable Wettability Materials for Controllable Oil/Water Separation -- 4.1 Oil Spill Treatment -- 4.2 Fundamentals of Special Wettability -- 4.2.1 Surface Wetting Properties -- 4.2.2 Liquid Wettability in Air -- 4.2.3 Oil Wettability Underwater -- 4.3 Special Wettable Materials for Oil/Water Separation -- 4.4 Switchable Oil/Water Separation -- 4.5 Surface Chemistry Behind Stimuli‐Responsive and Switchable Wettability.
4.6 Temperature Responsiveness -- 4.7 pH Responsiveness -- 4.7.1 Pyridine‐Based System -- 4.7.2 Carboxyl‐Based System -- 4.7.3 Tertiary Amine‐Based pH‐Responsive Systems -- 4.8 Photo‐responsiveness -- 4.8.1 Inorganic Photo‐responsive Materials -- 4.8.2 Organic Photo‐responsive Materials -- 4.9 Gas, Solvent, Ion, and Electric Field Responsiveness -- 4.9.1 Gas Responsiveness -- 4.9.2 Solvent Responsiveness -- 4.9.3 Ion Responsiveness -- 4.9.4 Electric Field Responsiveness -- 4.10 Dual/Multi‐stimuli -- 4.11 Conclusion -- References -- Chapter 5 Self‐Healing Materials for Environmental Applications -- 5.1 Biomimetic Self‐Healing Materials -- 5.2 Overview of Self‐Healing Materials -- 5.3 Extrinsic and Intrinsic Self‐Healing Materials -- 5.3.1 Extrinsic Self‐Healing Materials -- 5.3.2 Intrinsic Self‐Healing Materials -- 5.4 Self‐Healing Materials in Environmental Applications -- 5.4.1 Self‐Healing of Physical Cracks -- 5.4.2 Self‐Restoring of Surface Functional Components -- 5.4.2.1 Chemical Mechanism -- 5.4.2.2 Hydrophobic Self‐Healing -- 5.4.2.3 Hydrophilic Self‐Healing -- 5.4.3 Self‐Cleaning of Contaminated Surfaces -- 5.4.3.1 Superhydrophobicity‐Induced Self‐Cleaning -- 5.4.3.2 Superhydrophilicity‐Induced Self‐Cleaning -- 5.4.3.3 Photocatalytic Self‐Cleaning -- 5.5 Conclusion -- References -- Chapter 6 Emerging Nanofibrous Air Filters for PM2.5 Removal -- 6.1 Particulate Matter -- 6.2 Traditional Technology -- 6.3 Nanofibrous Membrane Air Filters -- 6.3.1 Filtration Mechanism -- 6.3.2 Fabrication Methods -- 6.4 Applications -- 6.4.1 Transparent Air Filter -- 6.4.2 Air Filter for High Thermal Stability -- 6.4.3 Air Filter for Thermal Management -- 6.4.4 Air Filter for Mass Production -- 6.4.5 Self‐Powered Air Filter -- 6.4.6 Nanofibrous Air Filter for the Simultaneous Removal of PM and Toxic Gases.
6.4.7 Nanofibrous Air Filter with Antibacterial Functions -- 6.4.8 Air Filtration and Oil Removal -- 6.5 Conclusion -- References -- Chapter 7 Intelligent Micro/Nanomotors in Environmental Sensing and Remediation -- 7.1 Self‐Propelling Mechanism of Micro/Nanomotors -- 7.1.1 Self‐Electrophoretic Mechanism -- 7.1.2 Microbubble Propulsion Mechanism -- 7.1.3 Self‐Diffusiophoresis Propulsion Mechanism -- 7.1.4 External Field‐Driven Micro/Nanomotors -- 7.2 Self‐Propelled Micro/Nanomotors as Environmental Sensors -- 7.3 Self‐Propelled Micro/Nanomotors for Enhanced Organic Contamination Degradation -- 7.4 Self‐Propelled Micro/Nanomotors as Efficient Antibacterial Agents -- 7.5 Self‐Propelled Micro/Nanomotors as Efficient Miniature Absorbent -- 7.5.1 Self‐Propelled Micro/Nanomotors for the Removal of Oil Droplets -- 7.5.2 Self‐Propelled Micro/Nanomotors for the Removal of Molecules or Ions -- 7.6 Conclusions -- References -- Chapter 8 Molecular Imprinting Materials in Environmental Application -- 8.1 Introduction -- 8.2 Fundamental of MIT -- 8.2.1 Covalent and Noncovalent Imprinting -- 8.2.2 Essential Elements of Molecular Imprinting -- 8.2.2.1 Target Templates -- 8.2.2.2 Functional Monomers -- 8.2.2.3 Cross‐Linkers -- 8.2.2.4 Porogenic Solvents -- 8.2.2.5 Initiators -- 8.2.3 Synthesis Methods of MIPs -- 8.2.3.1 Free Radical Polymerization -- 8.2.3.2 Sol-Gel Processes -- 8.3 Molecular Imprinting in Environmental Applications -- 8.3.1 Natural and Synthetic Dyes -- 8.3.2 Endocrine‐Disrupting Compounds -- 8.3.3 Polycyclic Aromatic Hydrocarbons (PAHs) -- 8.3.4 Pharmaceuticals and Pesticide -- 8.3.5 Metal -- 8.4 Conclusion -- References -- Chapter 9 Emerging Synergistically Multifunctional and All‐in‐One Nanomaterials and Nanodevices in Advanced Environmental Applications -- 9.1 Introduction -- 9.2 An All‐in‐One, Point‐of‐Use Water Desalination Cell.
9.3 3D‐Printed, All‐in‐One Evaporator for Solar Steam Generation -- 9.4 All‐in‐One Photothermic Driven Catalysis and Desalination of Seawater Under Natural Sunlight -- 9.5 All‐in‐One Design of Water Harvesting from Air Powered by Natural Sunlight -- 9.6 All‐in‐One Textile for Personal Thermal Management -- 9.7 Conclusion -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Global Challenges -- 1.2 Conventional Technologies in Environmental Science and Engineering -- 1.3 Nanotechnology -- 1.3.1 History of Nanotechnology Evolution -- 1.3.2 Concept and Definition -- 1.3.3 Fields of Current Applications -- 1.3.4 Nanotechnology in Environmental Engineering -- 1.4 Artificially Intelligent Materials -- 1.4.1 Artificial Intelligence (AI) and Nanotechnology -- 1.4.2 Examples of Artificially Intelligent Nanomaterials -- 1.4.2.1 Energy Nanogenerator/Nanosensor (Piezoelectric/Triboelectric Materials) -- 1.4.2.2 Shape‐Memory Materials -- 1.4.2.3 Actuator -- 1.5 Intelligent Environmental Nanomaterials -- 1.5.1 Overview -- 1.5.2 Self‐Propelled Nanomotors -- 1.5.3 Intelligent Gating Membrane -- 1.5.4 Switchable Oil/Water Separation -- 1.5.5 Self‐Healing Environmental Materials -- 1.5.6 Molecular Imprinting -- 1.5.7 Nanofibrous Membrane Air Filters -- 1.6 Introduction to the Book Chapters -- References -- Chapter 2 Fundamental Mechanisms of Intelligent Responsiveness -- 2.1 Overview of Intelligent Responsiveness -- 2.2 Responsiveness in the Polymer System -- 2.3 Thermoresponsiveness -- 2.3.1 LCST Thermoresponsiveness -- 2.3.2 UCST Thermoresponsiveness -- 2.3.2.1 Coulomb Interaction‐Induced UCST Polymers (Polyzwitterions) -- 2.3.2.2 Hydrogen Bonding‐Induced UCST Polymers -- 2.4 pH Responsiveness -- 2.4.1 pH‐Responsive Basic Polymers -- 2.4.2 pH‐Responsive Acidic Polymers -- 2.5 Photo‐responsiveness -- 2.5.1 Azobenzene and Its Derivatives -- 2.5.2 Spiropyran‐Based Polymers -- 2.5.3 Inorganic Photo‐Responsive Materials -- 2.6 Metalic Ion Responsiveness -- 2.6.1 Poly(NIPAM‐co‐AAB18C6) -- 2.6.2 Poly(NIPAM‐co‐AAB15C5) (15‐Crown‐5) -- 2.7 Ion Strength Responsiveness -- 2.8 Redox Responsiveness -- 2.9 Multi‐responsiveness.

2.9.1 Dual Stimuli‐Responsive Polymers -- 2.9.1.1 Thermo‐ and Photo‐Responsive Polymers -- 2.9.1.2 Thermo‐ and pH‐Responsive Polymers -- 2.9.1.3 Thermo‐ and Redox‐Responsive Polymers -- 2.9.2 Multi‐Stimuli‐Responsive Polymers -- 2.9.2.1 Thermo‐, Photo‐, and pH‐Responsive Polymers -- 2.9.2.2 Thermo‐, Photo‐, and Redox‐Responsive Polymers -- 2.10 Conclusion -- References -- Chapter 3 Filtration Membranes with Responsive Gates -- 3.1 Membrane Separation for Water Purification and Desalination -- 3.2 Emerging Design and Concept of Filtration Membranes with Responsive and Intelligent Gates -- 3.3 Fabrication Methods of Intelligent Gating Membranes -- 3.3.1 Post‐Modification Method -- 3.3.2 One‐Step Formation Method -- 3.4 Application of Intelligent Gating Membranes to Environmental Separation -- 3.5 Thermoresponsiveness -- 3.6 pH Responsiveness -- 3.6.1 Polybase Gating Membranes -- 3.6.2 Polyacid Gating Membrane -- 3.7 Photo‐responsiveness -- 3.7.1 Azobenzene‐Based Gating Membranes -- 3.7.2 Spiropyran‐Based Gating Membranes -- 3.8 Metallic Ion Responsiveness -- 3.9 Redox Responsiveness -- 3.10 Ion Strength Responsiveness -- 3.11 Dual and Multi‐Stimuli Responsiveness -- 3.11.1 pH and Temperature Dual Responsiveness -- 3.11.2 Temperature and Ion Strength Dual Responsiveness -- 3.11.3 pH and Ion Strength Dual Responsiveness -- 3.11.4 Temperature, pH, and Ion Strength Multi‐responsiveness -- 3.12 Conclusions -- References -- Chapter 4 Switchable Wettability Materials for Controllable Oil/Water Separation -- 4.1 Oil Spill Treatment -- 4.2 Fundamentals of Special Wettability -- 4.2.1 Surface Wetting Properties -- 4.2.2 Liquid Wettability in Air -- 4.2.3 Oil Wettability Underwater -- 4.3 Special Wettable Materials for Oil/Water Separation -- 4.4 Switchable Oil/Water Separation -- 4.5 Surface Chemistry Behind Stimuli‐Responsive and Switchable Wettability.

4.6 Temperature Responsiveness -- 4.7 pH Responsiveness -- 4.7.1 Pyridine‐Based System -- 4.7.2 Carboxyl‐Based System -- 4.7.3 Tertiary Amine‐Based pH‐Responsive Systems -- 4.8 Photo‐responsiveness -- 4.8.1 Inorganic Photo‐responsive Materials -- 4.8.2 Organic Photo‐responsive Materials -- 4.9 Gas, Solvent, Ion, and Electric Field Responsiveness -- 4.9.1 Gas Responsiveness -- 4.9.2 Solvent Responsiveness -- 4.9.3 Ion Responsiveness -- 4.9.4 Electric Field Responsiveness -- 4.10 Dual/Multi‐stimuli -- 4.11 Conclusion -- References -- Chapter 5 Self‐Healing Materials for Environmental Applications -- 5.1 Biomimetic Self‐Healing Materials -- 5.2 Overview of Self‐Healing Materials -- 5.3 Extrinsic and Intrinsic Self‐Healing Materials -- 5.3.1 Extrinsic Self‐Healing Materials -- 5.3.2 Intrinsic Self‐Healing Materials -- 5.4 Self‐Healing Materials in Environmental Applications -- 5.4.1 Self‐Healing of Physical Cracks -- 5.4.2 Self‐Restoring of Surface Functional Components -- 5.4.2.1 Chemical Mechanism -- 5.4.2.2 Hydrophobic Self‐Healing -- 5.4.2.3 Hydrophilic Self‐Healing -- 5.4.3 Self‐Cleaning of Contaminated Surfaces -- 5.4.3.1 Superhydrophobicity‐Induced Self‐Cleaning -- 5.4.3.2 Superhydrophilicity‐Induced Self‐Cleaning -- 5.4.3.3 Photocatalytic Self‐Cleaning -- 5.5 Conclusion -- References -- Chapter 6 Emerging Nanofibrous Air Filters for PM2.5 Removal -- 6.1 Particulate Matter -- 6.2 Traditional Technology -- 6.3 Nanofibrous Membrane Air Filters -- 6.3.1 Filtration Mechanism -- 6.3.2 Fabrication Methods -- 6.4 Applications -- 6.4.1 Transparent Air Filter -- 6.4.2 Air Filter for High Thermal Stability -- 6.4.3 Air Filter for Thermal Management -- 6.4.4 Air Filter for Mass Production -- 6.4.5 Self‐Powered Air Filter -- 6.4.6 Nanofibrous Air Filter for the Simultaneous Removal of PM and Toxic Gases.

6.4.7 Nanofibrous Air Filter with Antibacterial Functions -- 6.4.8 Air Filtration and Oil Removal -- 6.5 Conclusion -- References -- Chapter 7 Intelligent Micro/Nanomotors in Environmental Sensing and Remediation -- 7.1 Self‐Propelling Mechanism of Micro/Nanomotors -- 7.1.1 Self‐Electrophoretic Mechanism -- 7.1.2 Microbubble Propulsion Mechanism -- 7.1.3 Self‐Diffusiophoresis Propulsion Mechanism -- 7.1.4 External Field‐Driven Micro/Nanomotors -- 7.2 Self‐Propelled Micro/Nanomotors as Environmental Sensors -- 7.3 Self‐Propelled Micro/Nanomotors for Enhanced Organic Contamination Degradation -- 7.4 Self‐Propelled Micro/Nanomotors as Efficient Antibacterial Agents -- 7.5 Self‐Propelled Micro/Nanomotors as Efficient Miniature Absorbent -- 7.5.1 Self‐Propelled Micro/Nanomotors for the Removal of Oil Droplets -- 7.5.2 Self‐Propelled Micro/Nanomotors for the Removal of Molecules or Ions -- 7.6 Conclusions -- References -- Chapter 8 Molecular Imprinting Materials in Environmental Application -- 8.1 Introduction -- 8.2 Fundamental of MIT -- 8.2.1 Covalent and Noncovalent Imprinting -- 8.2.2 Essential Elements of Molecular Imprinting -- 8.2.2.1 Target Templates -- 8.2.2.2 Functional Monomers -- 8.2.2.3 Cross‐Linkers -- 8.2.2.4 Porogenic Solvents -- 8.2.2.5 Initiators -- 8.2.3 Synthesis Methods of MIPs -- 8.2.3.1 Free Radical Polymerization -- 8.2.3.2 Sol-Gel Processes -- 8.3 Molecular Imprinting in Environmental Applications -- 8.3.1 Natural and Synthetic Dyes -- 8.3.2 Endocrine‐Disrupting Compounds -- 8.3.3 Polycyclic Aromatic Hydrocarbons (PAHs) -- 8.3.4 Pharmaceuticals and Pesticide -- 8.3.5 Metal -- 8.4 Conclusion -- References -- Chapter 9 Emerging Synergistically Multifunctional and All‐in‐One Nanomaterials and Nanodevices in Advanced Environmental Applications -- 9.1 Introduction -- 9.2 An All‐in‐One, Point‐of‐Use Water Desalination Cell.

9.3 3D‐Printed, All‐in‐One Evaporator for Solar Steam Generation -- 9.4 All‐in‐One Photothermic Driven Catalysis and Desalination of Seawater Under Natural Sunlight -- 9.5 All‐in‐One Design of Water Harvesting from Air Powered by Natural Sunlight -- 9.6 All‐in‐One Textile for Personal Thermal Management -- 9.7 Conclusion -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.