ORPP logo
Image from Google Jackets

Photoenergy and Thin Film Materials.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (761 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119580478
Subject(s): Genre/Form: Additional physical formats: Print version:: Photoenergy and Thin Film MaterialsLOC classification:
  • QC715.4 .P468 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Advanced Photoenergy Materials -- 1 Use of Carbon Nanostructures in Hybrid Photovoltaic Devices -- 1.1 Introduction -- 1.2 Carbon Nanostructures -- 1.2.1 Structure and Physical Properties -- 1.2.2 Chemical Functionalization Approaches -- 1.3 Use of Carbon Nanostructures in Hybrid Photovoltaic Devices -- 1.3.1 Use of Carbon Nanostructures in Dye Sensitized Solar Cells -- 1.3.1.1 Carbon Nanostructures as Dopants for the Inorganic Semiconducting Layer -- 1.3.1.2 Carbon Nanostructures as Dopants for the Electrolyte -- 1.3.1.3 Carbon Nanostructure-Based Photosensitizers -- 1.3.2 Use of Carbon Nanostructures in Perovskite Solar Cells -- 1.3.2.1 Carbon Nanostructure-Based Electrodes for Perovskite Solar Cells -- 1.3.2.2 Carbon Nanostructure-Based Hole Transporting Materials for Perovskite Solar Cells -- 1.3.2.3 Carbon Nanostructure-Based Electron Transporting Layers for Perovskite Solar Cells -- 1.3.2.4 Carbon Nanostructures Integrated Within the Photoactive Layer of Perovskite Solar Cells -- 1.4 Conclusions and Outlook -- Acknowledgements -- References -- 2 Dye-Sensitized Solar Cells: Past, Present and Future -- 2.1 Introduction -- 2.2 Operational Mechanism -- 2.3 Sensitizer -- 2.3.1 Ruthenium-Based Dyes -- 2.3.2 Organic Dyes -- 2.3.3 Natural Dyes -- 2.3.4 Porphyrin Dyes -- 2.3.5 Quantum Dot Sensitizers -- 2.3.6 Perovskite-Based Sensitizers -- 2.4 Photoanode -- 2.4.1 Nanoarchitectures -- 2.4.2 Light Scattering Materials -- 2.4.3 Composites -- 2.4.4 Doping -- 2.4.5 Interfacial Engineering -- 2.4.6 TiCl4 Treatment -- 2.5 Electrolyte -- 2.5.1 Liquid Electrolytes -- 2.5.2 Quasi-Solid-State Electrolytes -- 2.5.3 Solid-State Transport Materials -- 2.6 Counter Electrode -- 2.6.1 Metals and Alloys -- 2.6.2 Carbon-Based Materials -- 2.6.3 Conducting Polymers.
2.6.4 Transition Metal Compounds -- 2.6.5 Hybrid Materials -- 2.7 Summary and Perspectives -- Acknowledgements -- References -- 3 Perovskite Solar Modules: Correlation Between Efficiency and Scalability -- 3.1 Introduction -- 3.2 Printing Techniques -- 3.2.1 Solution Processing Techniques -- 3.2.2 Vacuum-Based Techniques -- 3.3 Scaling Up Process -- 3.3.1 Spin Coated PSM -- 3.3.2 Blade Coated PSM -- 3.3.3 Slot Die Coating -- 3.3.4 Screen-Printed PSM -- 3.3.5 Vacuum-Based PSM -- 3.3.6 Solvent and Vacuum Free Perovskite Deposition -- 3.4 Modules Architecture -- 3.4.1 Series-Connected Solar Modules -- 3.4.2 Parallel-Connected Solar Modules -- 3.5 Process Flow for the Production of Perovskite-Based Solar Modules -- 3.5.1 The P1-P2-P3 Process -- 3.5.1.1 P1 Process, Ablation of the Transparent Conducting Oxide Electrodes -- 3.5.1.2 P2 Process, Ablation of the Active Layers -- 3.5.1.3 P3 Process, Isolation of the Counter-Electrodes -- 3.5.1.4 Safety Areas -- References -- 4 Brief Review on Copper Indium Gallium Diselenide (CIGS) Solar Cells -- 4.1 Introduction -- 4.1.1 Photovoltaic Effect -- 4.1.2 Solar Cell Material -- 4.2 Factors Affecting PV Performance -- 4.2.1 Doping -- 4.2.2 Diffusion and Drift Current -- 4.2.3 Recombination -- 4.2.4 Diffusion Length -- 4.2.5 Grain Size and Grain Boundaries -- 4.2.6 Cell Thickness -- 4.2.7 Cell Surface -- 4.3 CIGS Based Solar Cell and Its Configuration -- 4.3.1 CIGS Configuration -- 4.3.1.1 Back Contact -- 4.3.1.2 Absorber Layer -- 4.3.1.3 Effect of Na Diffusion -- 4.3.1.4 Buffer Layer -- 4.3.1.5 Front Contact -- 4.4 Advances in CIGS Solar Cell -- 4.4.1 CIGS-Tandem Solar Cell -- 4.4.2 Flexible CIGS Solar Cell -- 4.5 Summary -- Acknowledgement -- References -- 5 Interface Engineering for HighPerformance Printable Solar Cells -- 5.1 Introduction -- 5.2 Electrolytes.
5.2.1 Introduction of Electrolytes for Interface Engineering -- 5.2.2 Applications of Electrolytes to Printable Solar Cells -- 5.2.2.1 CPE as ESL -- 5.2.2.2 Fullerene Derivatives as ESL -- 5.2.2.3 NPEs as ESL -- 5.2.2.4 Non-Conjugated Small Molecule Electrolytes as ESL -- 5.2.2.5 Self-Assembly of Polyelectrolytes as ESL -- 5.2.2.6 Self-Doped CPEs as HSL -- 5.2.2.7 Small Molecular Electrolytes and NPEs as HSL -- 5.3 Transition Metal Oxides (TMOs) -- 5.3.1 Introduction of TMOs as ESLs for Interface Engineering -- 5.3.2 Applications of TMOs for Printable Solar Cells -- 5.3.2.1 Titanium Oxides (TiO2 and TiOx) as ESLs -- 5.3.2.2 Zinc Oxide (ZnO) as an ESL -- 5.3.2.3 Tin Oxide (SnO2) as an ESL -- 5.3.3 Applications of TMOs as HSLs for Printable Solar Cells -- 5.3.3.1 Molybdenum Oxide (MoO3) as an HSL -- 5.3.3.2 Tungsten Oxide (WO3) as an HSL -- 5.3.3.3 Vanadium Oxide (V2O5) as an HSL -- 5.3.3.4 Nickel Oxide (NiOx) as an HSL -- 5.3.3.5 Copper Oxide (Cu2O and CuO) as an HSL -- 5.3.3.6 Copper(I) Thiocyanate (CuSCN) as an HSL -- 5.4 Organic Semiconductors -- 5.4.1 Introduction of Organic Semiconductors for Interface Engineering -- 5.4.2 Applications for Printable Solar Cells -- 5.4.2.1 Fullerene-Based Organic Semiconductors as ESLs -- 5.4.2.2 Small Molecule-Based Organic Semiconductors as HSLs -- 5.4.2.3 Polymer-Based Organic Semiconductors as HSLs -- 5.4.2.4 Dopant-Free Organic Semiconductors as HSLs -- 5.4.2.5 Carbon Based Organic Semiconductors as HSLs -- 5.5 Outlook -- Acknowledgement -- References -- 6 Screen Printed Thick Films on Glass Substrate for Optoelectronic Applications -- 6.1 What Is Thick Film, Its Technology with Advantages -- 6.1.1 Thick Film Materials Substrates -- 6.1.2 Thick Film Inks -- 6.1.3 Sheet Resistivity -- 6.1.4 Conductor Pastes -- 6.1.5 Dielectric Pastes -- 6.1.6 Resistor Pastes.
6.2 To Select Suitable Technology for Film Deposition by Considering the Economy, Flexibility, Reliability and Performance Aspec -- 6.3 Experimental Procedure for Preparation of Thick Films by Screen Printing Process -- 6.4 Introduction of Semiconductor Metal Oxide (SMO) and Their Usage in Optoelectronic and Chemical Sensor Applications -- 6.4.1 Preparation of Cd0.75Zn0.25O Composition for Coating onGlass Substrate -- 6.5 To Study the Structural, Optical and Electrical Characteristics of Thick Film -- 6.5.1 X-Ray Diffraction (XRD) Analysis -- 6.5.2 Scanning Electron Microscopy (SEM) Analysis -- 6.5.3 Optical Properties -- 6.5.3.1 UV Analysis -- 6.5.4 Electrical Conduction Mechanism -- 6.6 To Study the Sensitivity, Selectivity, Stability and Response and Recovery Time for Various Gases: CO2, LPG, Ethanol, NH3, NO2 and H2S at Different Operating Temperatures -- 6.6.1 Mechanical Sensor -- 6.6.1.1 Thermal -- 6.6.1.2 Optical -- 6.6.1.3 Chemical -- 6.6.1.4 Magnetic -- 6.6.1.5 Actuators -- 6.6.1.6 Proposed Ethanol Vapor Sensing Mechanism -- 6.6.2 Sensing Performance of the Sensor -- 6.6.2.1 Measurement of Gas Response, Selectivity, Response and Recovery Time -- 6.7 Conclusion -- Acknowledgments -- References -- 7 Hausmannite (Mn3O4) - Synthesis and Its Electrochemical, Catalytic and Sensor Application -- 7.1 Hausmannite as Energy Storage Material: Introduction -- 7.1.1 Synthesis Methods -- 7.1.1.1 Chemical Precipitation -- 7.1.1.2 Sol-Gel Method -- 7.1.1.3 Hydrothermal/Solvothermal Method -- 7.1.1.4 Template Directed Methods -- 7.1.1.5 Thermal Decomposition -- 7.1.1.6 Chemical Bath Deposition -- 7.1.2 Electrochemical Behaviour -- 7.1.2.1 Mn3O4 Nanostructures -- 7.1.2.2 Mn3O4-Carbon Based Composite -- 7.1.2.3 Mn3O4-Metal/Metal Oxide Doping -- 7.2 Hausmannite Catalytic Application -- 7.2.1 Photocatalytic Application -- 7.2.2 Electrocatalytic Application.
7.3 Hausmannite Sensor Application -- 7.4 Summary -- Acknowledgement -- References -- Part II: Advanced Thin Films Materials -- 8 Sol-Gel Technology to Prepare Advanced Coatings -- 8.1 Introduction -- 8.1.1 Sol-Gel Chemistry -- 8.2 Sol-Gel Coating Preparation -- 8.2.1 Dip Coating -- 8.2.2 Spin Coating -- 8.3 Organic-Inorganic Hybrid Sol-Gel Coatings -- 8.4 Sol-Gel Coating Application -- 8.4.1 Optical Coatings -- 8.4.2 Electronic Films -- 8.4.3 Protective Films -- 8.4.4 Porous Films -- 8.4.5 Biomedical Application of the Sol-Gel Coatings -- 8.5 Conclusions -- References -- 9 The Use of Power Spectrum Density for Surface Characterization of Thin Films -- 9.1 Introduction -- 9.1.1 Uses of Power Spectral Density -- 9.1.2 Theory of Power Spectral Density -- 9.2 Literature Review -- 9.3 Methodology -- 9.3.1 Thin Film Deposition -- 9.3.2 Atomic Force Microscopy -- 9.3.3 Image Analysis -- 9.3.3.1 AFM Image Pre-Processing -- 9.3.3.2 Section Analyses -- 9.3.3.3 Fast Fourier Transformation (FFT) -- 9.3.3.4 Power Spectral Density Analysis -- 9.4 Results and Discussion -- 9.4.1 AFM Images and Line Profile Analysis -- 9.4.2 Power Spectral Density Profiles -- 9.5 Conclusion -- Acknowledgements -- References -- 10 Advanced Coating Nanomaterials for Drug Release Applications -- 10.1 Introduction -- 10.2 Ceramic Coating Nanomaterials -- 10.2.1 Hydroxyapatite-Based Nanocoatings -- 10.2.2 Oxide-Based Nanocoatings -- 10.2.2.1 Mesoporous Silica-Based Coatings -- 10.2.2.2 Mesoporous Bioactive Glass-Based Coatings -- 10.2.2.3 Mesoporous Titania-Based Coatings -- 10.3 Biopolymer Coating Nanomaterials -- 10.4 Composite Coating Nanomaterials -- 10.5 Conclusion and Perspectives -- References -- 11 Advancement in Material Coating for Engineering Applications -- 11.1 Introduction -- 11.2 Material Coating Methods -- 11.3 Electrostatic Powder Coating -- 11.3.1 Galvanizing.
11.3.2 Powder Coating.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Advanced Photoenergy Materials -- 1 Use of Carbon Nanostructures in Hybrid Photovoltaic Devices -- 1.1 Introduction -- 1.2 Carbon Nanostructures -- 1.2.1 Structure and Physical Properties -- 1.2.2 Chemical Functionalization Approaches -- 1.3 Use of Carbon Nanostructures in Hybrid Photovoltaic Devices -- 1.3.1 Use of Carbon Nanostructures in Dye Sensitized Solar Cells -- 1.3.1.1 Carbon Nanostructures as Dopants for the Inorganic Semiconducting Layer -- 1.3.1.2 Carbon Nanostructures as Dopants for the Electrolyte -- 1.3.1.3 Carbon Nanostructure-Based Photosensitizers -- 1.3.2 Use of Carbon Nanostructures in Perovskite Solar Cells -- 1.3.2.1 Carbon Nanostructure-Based Electrodes for Perovskite Solar Cells -- 1.3.2.2 Carbon Nanostructure-Based Hole Transporting Materials for Perovskite Solar Cells -- 1.3.2.3 Carbon Nanostructure-Based Electron Transporting Layers for Perovskite Solar Cells -- 1.3.2.4 Carbon Nanostructures Integrated Within the Photoactive Layer of Perovskite Solar Cells -- 1.4 Conclusions and Outlook -- Acknowledgements -- References -- 2 Dye-Sensitized Solar Cells: Past, Present and Future -- 2.1 Introduction -- 2.2 Operational Mechanism -- 2.3 Sensitizer -- 2.3.1 Ruthenium-Based Dyes -- 2.3.2 Organic Dyes -- 2.3.3 Natural Dyes -- 2.3.4 Porphyrin Dyes -- 2.3.5 Quantum Dot Sensitizers -- 2.3.6 Perovskite-Based Sensitizers -- 2.4 Photoanode -- 2.4.1 Nanoarchitectures -- 2.4.2 Light Scattering Materials -- 2.4.3 Composites -- 2.4.4 Doping -- 2.4.5 Interfacial Engineering -- 2.4.6 TiCl4 Treatment -- 2.5 Electrolyte -- 2.5.1 Liquid Electrolytes -- 2.5.2 Quasi-Solid-State Electrolytes -- 2.5.3 Solid-State Transport Materials -- 2.6 Counter Electrode -- 2.6.1 Metals and Alloys -- 2.6.2 Carbon-Based Materials -- 2.6.3 Conducting Polymers.

2.6.4 Transition Metal Compounds -- 2.6.5 Hybrid Materials -- 2.7 Summary and Perspectives -- Acknowledgements -- References -- 3 Perovskite Solar Modules: Correlation Between Efficiency and Scalability -- 3.1 Introduction -- 3.2 Printing Techniques -- 3.2.1 Solution Processing Techniques -- 3.2.2 Vacuum-Based Techniques -- 3.3 Scaling Up Process -- 3.3.1 Spin Coated PSM -- 3.3.2 Blade Coated PSM -- 3.3.3 Slot Die Coating -- 3.3.4 Screen-Printed PSM -- 3.3.5 Vacuum-Based PSM -- 3.3.6 Solvent and Vacuum Free Perovskite Deposition -- 3.4 Modules Architecture -- 3.4.1 Series-Connected Solar Modules -- 3.4.2 Parallel-Connected Solar Modules -- 3.5 Process Flow for the Production of Perovskite-Based Solar Modules -- 3.5.1 The P1-P2-P3 Process -- 3.5.1.1 P1 Process, Ablation of the Transparent Conducting Oxide Electrodes -- 3.5.1.2 P2 Process, Ablation of the Active Layers -- 3.5.1.3 P3 Process, Isolation of the Counter-Electrodes -- 3.5.1.4 Safety Areas -- References -- 4 Brief Review on Copper Indium Gallium Diselenide (CIGS) Solar Cells -- 4.1 Introduction -- 4.1.1 Photovoltaic Effect -- 4.1.2 Solar Cell Material -- 4.2 Factors Affecting PV Performance -- 4.2.1 Doping -- 4.2.2 Diffusion and Drift Current -- 4.2.3 Recombination -- 4.2.4 Diffusion Length -- 4.2.5 Grain Size and Grain Boundaries -- 4.2.6 Cell Thickness -- 4.2.7 Cell Surface -- 4.3 CIGS Based Solar Cell and Its Configuration -- 4.3.1 CIGS Configuration -- 4.3.1.1 Back Contact -- 4.3.1.2 Absorber Layer -- 4.3.1.3 Effect of Na Diffusion -- 4.3.1.4 Buffer Layer -- 4.3.1.5 Front Contact -- 4.4 Advances in CIGS Solar Cell -- 4.4.1 CIGS-Tandem Solar Cell -- 4.4.2 Flexible CIGS Solar Cell -- 4.5 Summary -- Acknowledgement -- References -- 5 Interface Engineering for HighPerformance Printable Solar Cells -- 5.1 Introduction -- 5.2 Electrolytes.

5.2.1 Introduction of Electrolytes for Interface Engineering -- 5.2.2 Applications of Electrolytes to Printable Solar Cells -- 5.2.2.1 CPE as ESL -- 5.2.2.2 Fullerene Derivatives as ESL -- 5.2.2.3 NPEs as ESL -- 5.2.2.4 Non-Conjugated Small Molecule Electrolytes as ESL -- 5.2.2.5 Self-Assembly of Polyelectrolytes as ESL -- 5.2.2.6 Self-Doped CPEs as HSL -- 5.2.2.7 Small Molecular Electrolytes and NPEs as HSL -- 5.3 Transition Metal Oxides (TMOs) -- 5.3.1 Introduction of TMOs as ESLs for Interface Engineering -- 5.3.2 Applications of TMOs for Printable Solar Cells -- 5.3.2.1 Titanium Oxides (TiO2 and TiOx) as ESLs -- 5.3.2.2 Zinc Oxide (ZnO) as an ESL -- 5.3.2.3 Tin Oxide (SnO2) as an ESL -- 5.3.3 Applications of TMOs as HSLs for Printable Solar Cells -- 5.3.3.1 Molybdenum Oxide (MoO3) as an HSL -- 5.3.3.2 Tungsten Oxide (WO3) as an HSL -- 5.3.3.3 Vanadium Oxide (V2O5) as an HSL -- 5.3.3.4 Nickel Oxide (NiOx) as an HSL -- 5.3.3.5 Copper Oxide (Cu2O and CuO) as an HSL -- 5.3.3.6 Copper(I) Thiocyanate (CuSCN) as an HSL -- 5.4 Organic Semiconductors -- 5.4.1 Introduction of Organic Semiconductors for Interface Engineering -- 5.4.2 Applications for Printable Solar Cells -- 5.4.2.1 Fullerene-Based Organic Semiconductors as ESLs -- 5.4.2.2 Small Molecule-Based Organic Semiconductors as HSLs -- 5.4.2.3 Polymer-Based Organic Semiconductors as HSLs -- 5.4.2.4 Dopant-Free Organic Semiconductors as HSLs -- 5.4.2.5 Carbon Based Organic Semiconductors as HSLs -- 5.5 Outlook -- Acknowledgement -- References -- 6 Screen Printed Thick Films on Glass Substrate for Optoelectronic Applications -- 6.1 What Is Thick Film, Its Technology with Advantages -- 6.1.1 Thick Film Materials Substrates -- 6.1.2 Thick Film Inks -- 6.1.3 Sheet Resistivity -- 6.1.4 Conductor Pastes -- 6.1.5 Dielectric Pastes -- 6.1.6 Resistor Pastes.

6.2 To Select Suitable Technology for Film Deposition by Considering the Economy, Flexibility, Reliability and Performance Aspec -- 6.3 Experimental Procedure for Preparation of Thick Films by Screen Printing Process -- 6.4 Introduction of Semiconductor Metal Oxide (SMO) and Their Usage in Optoelectronic and Chemical Sensor Applications -- 6.4.1 Preparation of Cd0.75Zn0.25O Composition for Coating onGlass Substrate -- 6.5 To Study the Structural, Optical and Electrical Characteristics of Thick Film -- 6.5.1 X-Ray Diffraction (XRD) Analysis -- 6.5.2 Scanning Electron Microscopy (SEM) Analysis -- 6.5.3 Optical Properties -- 6.5.3.1 UV Analysis -- 6.5.4 Electrical Conduction Mechanism -- 6.6 To Study the Sensitivity, Selectivity, Stability and Response and Recovery Time for Various Gases: CO2, LPG, Ethanol, NH3, NO2 and H2S at Different Operating Temperatures -- 6.6.1 Mechanical Sensor -- 6.6.1.1 Thermal -- 6.6.1.2 Optical -- 6.6.1.3 Chemical -- 6.6.1.4 Magnetic -- 6.6.1.5 Actuators -- 6.6.1.6 Proposed Ethanol Vapor Sensing Mechanism -- 6.6.2 Sensing Performance of the Sensor -- 6.6.2.1 Measurement of Gas Response, Selectivity, Response and Recovery Time -- 6.7 Conclusion -- Acknowledgments -- References -- 7 Hausmannite (Mn3O4) - Synthesis and Its Electrochemical, Catalytic and Sensor Application -- 7.1 Hausmannite as Energy Storage Material: Introduction -- 7.1.1 Synthesis Methods -- 7.1.1.1 Chemical Precipitation -- 7.1.1.2 Sol-Gel Method -- 7.1.1.3 Hydrothermal/Solvothermal Method -- 7.1.1.4 Template Directed Methods -- 7.1.1.5 Thermal Decomposition -- 7.1.1.6 Chemical Bath Deposition -- 7.1.2 Electrochemical Behaviour -- 7.1.2.1 Mn3O4 Nanostructures -- 7.1.2.2 Mn3O4-Carbon Based Composite -- 7.1.2.3 Mn3O4-Metal/Metal Oxide Doping -- 7.2 Hausmannite Catalytic Application -- 7.2.1 Photocatalytic Application -- 7.2.2 Electrocatalytic Application.

7.3 Hausmannite Sensor Application -- 7.4 Summary -- Acknowledgement -- References -- Part II: Advanced Thin Films Materials -- 8 Sol-Gel Technology to Prepare Advanced Coatings -- 8.1 Introduction -- 8.1.1 Sol-Gel Chemistry -- 8.2 Sol-Gel Coating Preparation -- 8.2.1 Dip Coating -- 8.2.2 Spin Coating -- 8.3 Organic-Inorganic Hybrid Sol-Gel Coatings -- 8.4 Sol-Gel Coating Application -- 8.4.1 Optical Coatings -- 8.4.2 Electronic Films -- 8.4.3 Protective Films -- 8.4.4 Porous Films -- 8.4.5 Biomedical Application of the Sol-Gel Coatings -- 8.5 Conclusions -- References -- 9 The Use of Power Spectrum Density for Surface Characterization of Thin Films -- 9.1 Introduction -- 9.1.1 Uses of Power Spectral Density -- 9.1.2 Theory of Power Spectral Density -- 9.2 Literature Review -- 9.3 Methodology -- 9.3.1 Thin Film Deposition -- 9.3.2 Atomic Force Microscopy -- 9.3.3 Image Analysis -- 9.3.3.1 AFM Image Pre-Processing -- 9.3.3.2 Section Analyses -- 9.3.3.3 Fast Fourier Transformation (FFT) -- 9.3.3.4 Power Spectral Density Analysis -- 9.4 Results and Discussion -- 9.4.1 AFM Images and Line Profile Analysis -- 9.4.2 Power Spectral Density Profiles -- 9.5 Conclusion -- Acknowledgements -- References -- 10 Advanced Coating Nanomaterials for Drug Release Applications -- 10.1 Introduction -- 10.2 Ceramic Coating Nanomaterials -- 10.2.1 Hydroxyapatite-Based Nanocoatings -- 10.2.2 Oxide-Based Nanocoatings -- 10.2.2.1 Mesoporous Silica-Based Coatings -- 10.2.2.2 Mesoporous Bioactive Glass-Based Coatings -- 10.2.2.3 Mesoporous Titania-Based Coatings -- 10.3 Biopolymer Coating Nanomaterials -- 10.4 Composite Coating Nanomaterials -- 10.5 Conclusion and Perspectives -- References -- 11 Advancement in Material Coating for Engineering Applications -- 11.1 Introduction -- 11.2 Material Coating Methods -- 11.3 Electrostatic Powder Coating -- 11.3.1 Galvanizing.

11.3.2 Powder Coating.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.