ORPP logo
Image from Google Jackets

Fundamentals of Liquid Crystal Devices.

By: Contributor(s): Material type: TextTextSeries: Wiley Series in Display Technology SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2014Copyright date: ©2015Edition: 2nd edDescription: 1 online resource (591 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118751954
Subject(s): Genre/Form: Additional physical formats: Print version:: Fundamentals of Liquid Crystal DevicesDDC classification:
  • 621.3815/422
LOC classification:
  • TK7872.L56 -- .Y364 2015eb
Online resources:
Contents:
Intro -- Fundamentals of Liquid Crystal Devices -- Copyright -- Contents -- Series Editor´s Foreword -- Preface to the First Edition -- Preface to the Second Edition -- Chapter 1 Liquid Crystal Physics -- 1.1 Introduction -- 1.2 Thermodynamics and Statistical Physics -- 1.2.1 Thermodynamic laws -- 1.2.2 Boltzmann Distribution -- 1.2.3 Thermodynamic quantities -- 1.2.4 Criteria for thermodynamical equilibrium -- 1.3 Orientational Order -- 1.3.1 Orientational order parameter -- 1.3.2 Landau-de Gennes theory of orientational order in nematic phase -- 1.3.3 Maier-Saupe theory -- 1.4 Elastic Properties of Liquid Crystals -- 1.4.1 Elastic properties of nematic liquid crystals -- 1.4.2 Elastic properties of cholesteric liquid crystals -- 1.4.3 Elastic properties of smectic liquid crystals -- 1.5 Response of Liquid Crystals to Electromagnetic Fields -- 1.5.1 Magnetic susceptibility -- 1.5.2 Dielectric permittivity and refractive index -- 1.6 Anchoring Effects of Nematic Liquid Crystal at Surfaces -- 1.6.1 Anchoring energy -- 1.6.2 Alignment layers -- 1.7 Liquid crystal director elastic deformation -- 1.7.1 Elastic deformation and disclination -- 1.7.2 Escape of liquid crystal director in disclinations -- Homework Problems -- References -- Chapter 2 Propagation of Light in Anisotropic Optical Media -- 2.1 Electromagnetic Wave -- 2.2 Polarization -- 2.2.1 Monochromatic plane waves and their polarization states -- 2.2.2 Linear polarization state -- 2.2.3 Circular polarization states -- 2.2.4 Elliptical polarization state -- 2.3 Propagation of Light in Uniform Anisotropic Optical Media -- 2.3.1 Eigenmodes -- 2.3.2 Orthogonality of eigenmodes -- 2.3.3 Energy flux -- 2.3.4 Special cases -- 2.3.5 Polarizers -- 2.4 Propagation of Light in Cholesteric Liquid Crystals -- 2.4.1 Eigenmodes -- 2.4.2 Reflection of cholesteric liquid crystals.
2.4.3 Lasing in cholesteric liquid crystals -- Homework Problems -- References -- Chapter 3 Optical Modeling Methods -- 3.1 Jones Matrix Method -- 3.1.1 Jones vector -- 3.1.2 Jones matrix -- 3.1.3 Jones matrix of non-uniform birefringent film -- 3.1.4 Optical properties of twisted nematic -- 3.2 Mueller Matrix Method -- 3.2.1 Partially polarized and unpolarized light -- 3.2.2 Measurement of the Stokes parameters -- 3.2.3 The Mueller matrix -- 3.2.4 Poincaré sphere -- 3.2.5 Evolution of the polarization states on the Poincaré sphere -- 3.2.6 Mueller matrix of twisted nematic liquid crystals -- 3.2.7 Mueller matrix of non-uniform birefringence film -- 3.3 Berreman 4x4 Method -- Homework Problems -- References -- Chapter 4 Effects of Electric Field on Liquid Crystals -- 4.1 Dielectric Interaction -- 4.1.1 Reorientation under dielectric interaction -- 4.1.2 Field-induced orientational order -- 4.2 Flexoelectric Effect -- 4.2.1 Flexoelectric effect in nematic liquid crystals -- 4.2.2 Flexoelectric effect in cholesteric liquid crystals -- 4.3 Ferroelectric Liquid Crystal -- 4.3.1 Symmetry and polarization -- 4.3.2 Tilt angle and polarization -- 4.3.3 Surface stabilized ferroelectric liquid crystals -- 4.3.4 Electroclinic effect in chiral smectic liquid crystal -- Homework Problems -- References -- Chapter 5 Fréedericksz Transition -- 5.1 Calculus of Variation -- 5.1.1 One dimension and one variable -- 5.1.2 One dimension and multiple variables -- 5.1.3 Three dimensions -- 5.2 Fréedericksz Transition: Statics -- 5.2.1 Splay geometry -- 5.2.2 Bend geometry -- 5.2.3 Twist geometry -- 5.2.4 Twisted nematic cell -- 5.2.5 Splay geometry with weak anchoring -- 5.2.6 Splay geometry with pretilt angle -- 5.3 Measurement of Anchoring Strength -- 5.3.1 Polar anchoring strength -- 5.3.2 Azimuthal anchoring strength -- 5.4 Measurement of Pretilt Angle.
5.5 Fréedericksz Transition: Dynamics -- 5.5.1 Dynamics of Fréedericksz transition in twist geometry -- 5.5.2 Hydrodynamics -- 5.5.3 Backflow -- Homework Problems -- References -- Chapter 6 Liquid Crystal Materials -- 6.1 Introduction -- 6.2 Refractive Indices -- 6.2.1 Extended Cauchy equations -- 6.2.2 Three-band model -- 6.2.3 Temperature effect -- 6.2.4 Temperature gradient -- 6.2.5 Molecular polarizabilities -- 6.3 Dielectric Constants -- 6.3.1 Positive Δε liquid crystals for AMLCD -- 6.3.2 Negative Δε liquid crystals -- 6.3.3 Dual-frequency liquid crystals -- 6.4 Rotational Viscosity -- 6.5 Elastic Constants -- 6.6 Figure-of-Merit (FoM) -- 6.7 Index Matching between Liquid Crystals and Polymers -- 6.7.1 Refractive index of polymers -- 6.7.2 Matching refractive index -- Homework problems -- References -- Chapter 7 Modeling Liquid Crystal Director Configuration -- 7.1 Electric Energy of Liquid Crystals -- 7.1.1 Constant charge -- 7.1.2 Constant voltage -- 7.1.3 Constant electric field -- 7.2 Modeling Electric Field -- 7.3 Simulation of Liquid Crystal Director Configuration -- 7.3.1 Angle representation -- 7.3.2 Vector representation -- 7.3.3 Tensor representation -- Homework Problems -- References -- Chapter 8 Transmissive Liquid Crystal Displays -- 8.1 Introduction -- 8.2 Twisted Nematic (TN) Cells -- 8.2.1 Voltage-dependent transmittance -- 8.2.2 Film-compensated TN cells -- 8.2.3 Viewing angle -- 8.3 In-Plane Switching Mode -- 8.3.1 Voltage-dependent transmittance -- 8.3.2 Response time -- 8.3.3 Viewing angle -- 8.3.4 Classification of compensation films -- 8.3.5 Phase retardation of uniaxial media at oblique angles -- 8.3.6 Poincaré sphere representation -- 8.3.7 Light leakage of crossed polarizers at oblique view -- 8.3.8 IPS with a positive a film and a positive c film -- 8.3.9 IPS with positive and negative a films -- 8.3.10 Color shift.
8.4 Vertical Alignment Mode -- 8.4.1 Voltage-dependent transmittance -- 8.4.2 Optical response time -- 8.4.3 Overdrive and undershoot voltage method -- 8.5 Multi-Domain Vertical Alignment Cells -- 8.5.1 MVA with a positive a film and a negative c film -- 8.5.2 MVA with a positive a, a negative a, and a negative c film -- 8.6 Optically Compensated Bend Cell -- 8.6.1 Voltage-dependent transmittance -- 8.6.2 Compensation films for OCB -- Homework Problems -- References -- Chapter 9 Reflective and Transflective Liquid Crystal Displays -- 9.1 Introduction -- 9.2 Reflective Liquid Crystal Displays -- 9.2.1 Film-compensated homogeneous cell -- 9.2.2 Mixed-mode twisted nematic (MTN) cells -- 9.3 Transflector -- 9.3.1 Openings-on-metal transflector -- 9.3.2 Half-mirror metal transflector -- 9.3.3 Multilayer dielectric film transflector -- 9.3.4 Orthogonal polarization transflectors -- 9.4 Classification of Transflective LCDs -- 9.4.1 Absorption-type transflective LCDs -- 9.4.2 Scattering-type transflective LCDs -- 9.4.3 Scattering and absorption type transflective LCDs -- 9.4.4 Reflection-type transflective LCDs -- 9.4.5 Phase retardation type -- 9.5 Dual-Cell-Gap Transflective LCDs -- 9.6 Single-Cell-Gap Transflective LCDs -- 9.7 Performance of Transflective LCDs -- 9.7.1 Color balance -- 9.7.2 Image brightness -- 9.7.3 Viewing angle -- Homework Problems -- References -- Chapter 10 Liquid Crystal Display Matrices, Drive Schemes and Bistable Displays -- 10.1 Segmented Displays -- 10.2 Passive Matrix Displays and Drive Scheme -- 10.3 Active Matrix Displays -- 10.3.1 TFT structure -- 10.3.2 TFT operation principles -- 10.4 Bistable Ferroelectric LCD and Drive Scheme -- 10.5 Bistable Nematic Displays -- 10.5.1 Introduction -- 10.5.2 Twisted-untwisted bistable nematic LCDs -- 10.5.3 Surface-stabilized nematic liquid crystals.
10.6 Bistable Cholesteric Reflective Display -- 10.6.1 Introduction -- 10.6.2 Optical properties of bistable Ch reflective displays -- 10.6.3 Encapsulated cholesteric liquid crystal displays -- 10.6.4 Transition between cholesteric states -- 10.6.5 Drive schemes for bistable Ch displays -- Homework Problems -- References -- Chapter 11 Liquid Crystal/Polymer Composites -- 11.1 Introduction -- 11.2 Phase Separation -- 11.2.1 Binary mixture -- 11.2.2 Phase diagram and thermal induced phase separation -- 11.2.3 Polymerization induced phase separation -- 11.2.4 Solvent-induced phase separation -- 11.2.5 Encapsulation -- 11.3 Scattering Properties of LCPCs -- 11.4 Polymer Dispersed Liquid Crystals -- 11.4.1 Liquid crystal droplet configurations in PDLCs -- 11.4.2 Switching PDLCs -- 11.4.3 Scattering PDLC devices -- 11.4.4 Dichroic dye-doped PDLC -- 11.4.5 Holographic PDLCs -- 11.5 PSLCs -- 11.5.1 Preparation of PSLCs -- 11.5.2 Working modes of scattering PSLCs -- 11.6 Scattering-Based Displays from LCPCs -- 11.6.1 Reflective displays -- 11.6.2 Projection displays -- 11.6.3 Transmissive direct-view displays -- 11.7 Polymer-Stabilized LCDs -- Homework Problems -- References -- Chapter 12 Tunable Liquid Crystal Photonic Devices -- 12.1 Introduction -- 12.2 Laser Beam Steering -- 12.2.1 Optical phased array -- 12.2.2 Prism-based beam steering -- 12.3 Variable Optical Attenuators -- 12.4 Tunable-Focus Lens -- 12.4.1 Tunable-focus spherical lens -- 12.4.2 Tunable-focus cylindrical lens -- 12.4.3 Switchable positive and negative microlens -- 12.4.4 Hermaphroditic LC microlens -- 12.5 Polarization-Independent LC Devices -- 12.5.1 Double-layered homogeneous LC cells -- 12.5.2 Double-layered LC gels -- Homework Problems -- References -- Chapter 13 Blue Phases of Chiral Liquid Crystals -- 13.1 Introduction -- 13.2 Phase Diagram of Blue Phases.
13.3 Reflection of Blue Phases.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Fundamentals of Liquid Crystal Devices -- Copyright -- Contents -- Series Editor´s Foreword -- Preface to the First Edition -- Preface to the Second Edition -- Chapter 1 Liquid Crystal Physics -- 1.1 Introduction -- 1.2 Thermodynamics and Statistical Physics -- 1.2.1 Thermodynamic laws -- 1.2.2 Boltzmann Distribution -- 1.2.3 Thermodynamic quantities -- 1.2.4 Criteria for thermodynamical equilibrium -- 1.3 Orientational Order -- 1.3.1 Orientational order parameter -- 1.3.2 Landau-de Gennes theory of orientational order in nematic phase -- 1.3.3 Maier-Saupe theory -- 1.4 Elastic Properties of Liquid Crystals -- 1.4.1 Elastic properties of nematic liquid crystals -- 1.4.2 Elastic properties of cholesteric liquid crystals -- 1.4.3 Elastic properties of smectic liquid crystals -- 1.5 Response of Liquid Crystals to Electromagnetic Fields -- 1.5.1 Magnetic susceptibility -- 1.5.2 Dielectric permittivity and refractive index -- 1.6 Anchoring Effects of Nematic Liquid Crystal at Surfaces -- 1.6.1 Anchoring energy -- 1.6.2 Alignment layers -- 1.7 Liquid crystal director elastic deformation -- 1.7.1 Elastic deformation and disclination -- 1.7.2 Escape of liquid crystal director in disclinations -- Homework Problems -- References -- Chapter 2 Propagation of Light in Anisotropic Optical Media -- 2.1 Electromagnetic Wave -- 2.2 Polarization -- 2.2.1 Monochromatic plane waves and their polarization states -- 2.2.2 Linear polarization state -- 2.2.3 Circular polarization states -- 2.2.4 Elliptical polarization state -- 2.3 Propagation of Light in Uniform Anisotropic Optical Media -- 2.3.1 Eigenmodes -- 2.3.2 Orthogonality of eigenmodes -- 2.3.3 Energy flux -- 2.3.4 Special cases -- 2.3.5 Polarizers -- 2.4 Propagation of Light in Cholesteric Liquid Crystals -- 2.4.1 Eigenmodes -- 2.4.2 Reflection of cholesteric liquid crystals.

2.4.3 Lasing in cholesteric liquid crystals -- Homework Problems -- References -- Chapter 3 Optical Modeling Methods -- 3.1 Jones Matrix Method -- 3.1.1 Jones vector -- 3.1.2 Jones matrix -- 3.1.3 Jones matrix of non-uniform birefringent film -- 3.1.4 Optical properties of twisted nematic -- 3.2 Mueller Matrix Method -- 3.2.1 Partially polarized and unpolarized light -- 3.2.2 Measurement of the Stokes parameters -- 3.2.3 The Mueller matrix -- 3.2.4 Poincaré sphere -- 3.2.5 Evolution of the polarization states on the Poincaré sphere -- 3.2.6 Mueller matrix of twisted nematic liquid crystals -- 3.2.7 Mueller matrix of non-uniform birefringence film -- 3.3 Berreman 4x4 Method -- Homework Problems -- References -- Chapter 4 Effects of Electric Field on Liquid Crystals -- 4.1 Dielectric Interaction -- 4.1.1 Reorientation under dielectric interaction -- 4.1.2 Field-induced orientational order -- 4.2 Flexoelectric Effect -- 4.2.1 Flexoelectric effect in nematic liquid crystals -- 4.2.2 Flexoelectric effect in cholesteric liquid crystals -- 4.3 Ferroelectric Liquid Crystal -- 4.3.1 Symmetry and polarization -- 4.3.2 Tilt angle and polarization -- 4.3.3 Surface stabilized ferroelectric liquid crystals -- 4.3.4 Electroclinic effect in chiral smectic liquid crystal -- Homework Problems -- References -- Chapter 5 Fréedericksz Transition -- 5.1 Calculus of Variation -- 5.1.1 One dimension and one variable -- 5.1.2 One dimension and multiple variables -- 5.1.3 Three dimensions -- 5.2 Fréedericksz Transition: Statics -- 5.2.1 Splay geometry -- 5.2.2 Bend geometry -- 5.2.3 Twist geometry -- 5.2.4 Twisted nematic cell -- 5.2.5 Splay geometry with weak anchoring -- 5.2.6 Splay geometry with pretilt angle -- 5.3 Measurement of Anchoring Strength -- 5.3.1 Polar anchoring strength -- 5.3.2 Azimuthal anchoring strength -- 5.4 Measurement of Pretilt Angle.

5.5 Fréedericksz Transition: Dynamics -- 5.5.1 Dynamics of Fréedericksz transition in twist geometry -- 5.5.2 Hydrodynamics -- 5.5.3 Backflow -- Homework Problems -- References -- Chapter 6 Liquid Crystal Materials -- 6.1 Introduction -- 6.2 Refractive Indices -- 6.2.1 Extended Cauchy equations -- 6.2.2 Three-band model -- 6.2.3 Temperature effect -- 6.2.4 Temperature gradient -- 6.2.5 Molecular polarizabilities -- 6.3 Dielectric Constants -- 6.3.1 Positive Δε liquid crystals for AMLCD -- 6.3.2 Negative Δε liquid crystals -- 6.3.3 Dual-frequency liquid crystals -- 6.4 Rotational Viscosity -- 6.5 Elastic Constants -- 6.6 Figure-of-Merit (FoM) -- 6.7 Index Matching between Liquid Crystals and Polymers -- 6.7.1 Refractive index of polymers -- 6.7.2 Matching refractive index -- Homework problems -- References -- Chapter 7 Modeling Liquid Crystal Director Configuration -- 7.1 Electric Energy of Liquid Crystals -- 7.1.1 Constant charge -- 7.1.2 Constant voltage -- 7.1.3 Constant electric field -- 7.2 Modeling Electric Field -- 7.3 Simulation of Liquid Crystal Director Configuration -- 7.3.1 Angle representation -- 7.3.2 Vector representation -- 7.3.3 Tensor representation -- Homework Problems -- References -- Chapter 8 Transmissive Liquid Crystal Displays -- 8.1 Introduction -- 8.2 Twisted Nematic (TN) Cells -- 8.2.1 Voltage-dependent transmittance -- 8.2.2 Film-compensated TN cells -- 8.2.3 Viewing angle -- 8.3 In-Plane Switching Mode -- 8.3.1 Voltage-dependent transmittance -- 8.3.2 Response time -- 8.3.3 Viewing angle -- 8.3.4 Classification of compensation films -- 8.3.5 Phase retardation of uniaxial media at oblique angles -- 8.3.6 Poincaré sphere representation -- 8.3.7 Light leakage of crossed polarizers at oblique view -- 8.3.8 IPS with a positive a film and a positive c film -- 8.3.9 IPS with positive and negative a films -- 8.3.10 Color shift.

8.4 Vertical Alignment Mode -- 8.4.1 Voltage-dependent transmittance -- 8.4.2 Optical response time -- 8.4.3 Overdrive and undershoot voltage method -- 8.5 Multi-Domain Vertical Alignment Cells -- 8.5.1 MVA with a positive a film and a negative c film -- 8.5.2 MVA with a positive a, a negative a, and a negative c film -- 8.6 Optically Compensated Bend Cell -- 8.6.1 Voltage-dependent transmittance -- 8.6.2 Compensation films for OCB -- Homework Problems -- References -- Chapter 9 Reflective and Transflective Liquid Crystal Displays -- 9.1 Introduction -- 9.2 Reflective Liquid Crystal Displays -- 9.2.1 Film-compensated homogeneous cell -- 9.2.2 Mixed-mode twisted nematic (MTN) cells -- 9.3 Transflector -- 9.3.1 Openings-on-metal transflector -- 9.3.2 Half-mirror metal transflector -- 9.3.3 Multilayer dielectric film transflector -- 9.3.4 Orthogonal polarization transflectors -- 9.4 Classification of Transflective LCDs -- 9.4.1 Absorption-type transflective LCDs -- 9.4.2 Scattering-type transflective LCDs -- 9.4.3 Scattering and absorption type transflective LCDs -- 9.4.4 Reflection-type transflective LCDs -- 9.4.5 Phase retardation type -- 9.5 Dual-Cell-Gap Transflective LCDs -- 9.6 Single-Cell-Gap Transflective LCDs -- 9.7 Performance of Transflective LCDs -- 9.7.1 Color balance -- 9.7.2 Image brightness -- 9.7.3 Viewing angle -- Homework Problems -- References -- Chapter 10 Liquid Crystal Display Matrices, Drive Schemes and Bistable Displays -- 10.1 Segmented Displays -- 10.2 Passive Matrix Displays and Drive Scheme -- 10.3 Active Matrix Displays -- 10.3.1 TFT structure -- 10.3.2 TFT operation principles -- 10.4 Bistable Ferroelectric LCD and Drive Scheme -- 10.5 Bistable Nematic Displays -- 10.5.1 Introduction -- 10.5.2 Twisted-untwisted bistable nematic LCDs -- 10.5.3 Surface-stabilized nematic liquid crystals.

10.6 Bistable Cholesteric Reflective Display -- 10.6.1 Introduction -- 10.6.2 Optical properties of bistable Ch reflective displays -- 10.6.3 Encapsulated cholesteric liquid crystal displays -- 10.6.4 Transition between cholesteric states -- 10.6.5 Drive schemes for bistable Ch displays -- Homework Problems -- References -- Chapter 11 Liquid Crystal/Polymer Composites -- 11.1 Introduction -- 11.2 Phase Separation -- 11.2.1 Binary mixture -- 11.2.2 Phase diagram and thermal induced phase separation -- 11.2.3 Polymerization induced phase separation -- 11.2.4 Solvent-induced phase separation -- 11.2.5 Encapsulation -- 11.3 Scattering Properties of LCPCs -- 11.4 Polymer Dispersed Liquid Crystals -- 11.4.1 Liquid crystal droplet configurations in PDLCs -- 11.4.2 Switching PDLCs -- 11.4.3 Scattering PDLC devices -- 11.4.4 Dichroic dye-doped PDLC -- 11.4.5 Holographic PDLCs -- 11.5 PSLCs -- 11.5.1 Preparation of PSLCs -- 11.5.2 Working modes of scattering PSLCs -- 11.6 Scattering-Based Displays from LCPCs -- 11.6.1 Reflective displays -- 11.6.2 Projection displays -- 11.6.3 Transmissive direct-view displays -- 11.7 Polymer-Stabilized LCDs -- Homework Problems -- References -- Chapter 12 Tunable Liquid Crystal Photonic Devices -- 12.1 Introduction -- 12.2 Laser Beam Steering -- 12.2.1 Optical phased array -- 12.2.2 Prism-based beam steering -- 12.3 Variable Optical Attenuators -- 12.4 Tunable-Focus Lens -- 12.4.1 Tunable-focus spherical lens -- 12.4.2 Tunable-focus cylindrical lens -- 12.4.3 Switchable positive and negative microlens -- 12.4.4 Hermaphroditic LC microlens -- 12.5 Polarization-Independent LC Devices -- 12.5.1 Double-layered homogeneous LC cells -- 12.5.2 Double-layered LC gels -- Homework Problems -- References -- Chapter 13 Blue Phases of Chiral Liquid Crystals -- 13.1 Introduction -- 13.2 Phase Diagram of Blue Phases.

13.3 Reflection of Blue Phases.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.