ORPP logo
Image from Google Jackets

Generalized Mercer Kernels and Reproducing Kernel Banach Spaces.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society SeriesPublisher: Providence : American Mathematical Society, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (134 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470450779
Subject(s): Genre/Form: Additional physical formats: Print version:: Generalized Mercer Kernels and Reproducing Kernel Banach SpacesDDC classification:
  • 515/.732
LOC classification:
  • QA353.K47 .X8 2019
Online resources:
Contents:
Cover -- Title page -- Chapter 1. Introduction -- 1.1. Machine Learning in Banach Spaces -- 1.2. Overview of Kernel-based Function Spaces -- 1.3. Main Results -- Chapter 2. Reproducing Kernel Banach Spaces -- 2.1. Reproducing Kernels and Reproducing Kernel Banach Spaces -- 2.2. Density, Continuity, and Separability -- 2.3. Implicit Representation -- 2.4. Imbedding -- 2.5. Compactness -- 2.6. Representer Theorem -- 2.7. Oracle Inequality -- 2.8. Universal Approximation -- Chapter 3. Generalized Mercer Kernels -- 3.1. Constructing Generalized Mercer Kernels -- 3.2. Constructing -norm Reproducing Kernel Banach Spaces for 1&lt -- &lt -- ∞ -- 3.3. Constructing 1-norm Reproducing Kernel Banach Spaces -- Chapter 4. Positive Definite Kernels -- 4.1. Definition of Positive Definite Kernels -- 4.2. Constructing Reproducing Kernel Banach Spaces by Eigenvalues and Eigenfunctions -- 4.3. Min Kernels -- 4.4. Gaussian Kernels -- 4.5. Power Series Kernels -- Chapter 5. Support Vector Machines -- 5.1. Background of Support Vector Machines -- 5.2. Support Vector Machines in -norm Reproducing Kernel Banach Spaces for 1&lt -- &lt -- ∞ -- 5.3. Support Vector Machines in 1-norm Reproducing Kernel Banach Spaces -- 5.4. Sparse Sampling in 1-norm Reproducing Kernel Banach Spaces -- 5.5. Support Vector Machines in Special Reproducing Kernel Banach Spaces -- Chapter 6. Concluding Remarks -- Acknowledgments -- Bibliography -- Index -- Back Cover.
Summary: This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First the authors verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, they develop a new concept of generalized Mercer kernels to construct p-norm RKBSs for 1\leq p\leq\infty.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Chapter 1. Introduction -- 1.1. Machine Learning in Banach Spaces -- 1.2. Overview of Kernel-based Function Spaces -- 1.3. Main Results -- Chapter 2. Reproducing Kernel Banach Spaces -- 2.1. Reproducing Kernels and Reproducing Kernel Banach Spaces -- 2.2. Density, Continuity, and Separability -- 2.3. Implicit Representation -- 2.4. Imbedding -- 2.5. Compactness -- 2.6. Representer Theorem -- 2.7. Oracle Inequality -- 2.8. Universal Approximation -- Chapter 3. Generalized Mercer Kernels -- 3.1. Constructing Generalized Mercer Kernels -- 3.2. Constructing -norm Reproducing Kernel Banach Spaces for 1&lt -- &lt -- ∞ -- 3.3. Constructing 1-norm Reproducing Kernel Banach Spaces -- Chapter 4. Positive Definite Kernels -- 4.1. Definition of Positive Definite Kernels -- 4.2. Constructing Reproducing Kernel Banach Spaces by Eigenvalues and Eigenfunctions -- 4.3. Min Kernels -- 4.4. Gaussian Kernels -- 4.5. Power Series Kernels -- Chapter 5. Support Vector Machines -- 5.1. Background of Support Vector Machines -- 5.2. Support Vector Machines in -norm Reproducing Kernel Banach Spaces for 1&lt -- &lt -- ∞ -- 5.3. Support Vector Machines in 1-norm Reproducing Kernel Banach Spaces -- 5.4. Sparse Sampling in 1-norm Reproducing Kernel Banach Spaces -- 5.5. Support Vector Machines in Special Reproducing Kernel Banach Spaces -- Chapter 6. Concluding Remarks -- Acknowledgments -- Bibliography -- Index -- Back Cover.

This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First the authors verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, they develop a new concept of generalized Mercer kernels to construct p-norm RKBSs for 1\leq p\leq\infty.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.