ORPP logo
Image from Google Jackets

Meromorphic Continuation and Functional Equations of Cuspidal Eisenstein Series for Maximal Cuspidal Subgroups.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1990Copyright date: ©1990Edition: 1st edDescription: 1 online resource (225 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470408466
Subject(s): Genre/Form: Additional physical formats: Print version:: Meromorphic Continuation and Functional Equations of Cuspidal Eisenstein Series for Maximal Cuspidal SubgroupsDDC classification:
  • 515/.243
LOC classification:
  • QA295 -- .W664 1990eb
Online resources:
Contents:
Intro -- TABLE OF CONTENTS -- INTRODUCTION -- CHAPTER 1 THE DEFINITION AND BASIC PROPERTIES OF THE EISENSTEIN SERIES -- 1.1. Introduction -- 1.2. Prerequisites for the Eisenstein Series -- 1.3. The Eisenstein Series -- 1.4. Selberg's Eigenfunction Principle -- CHAPTER 2 THE COMPACT OPERATORS -- 2.1. Introduction -- 2.2. Construction of Kernel -- 2.3. Convolutions on L[sup(2)](Γ \ G) -- 2.4. Definition of Compact Operators -- CHAPTER 3 FREDHOLM EQUATIONS -- 3.1. Introduction -- 3.2. The Constant Terms of Eisenstein Series -- 3.3. Convolution with Functions Depending on a Complex Parameter -- 3.4. Projection of the Constant Terms of Eisenstein Series -- 3.5. Truncation of the Eisenstein Series -- 3.6. Holomorphicity of Fredholm Solutions -- CHAPTER 4 ANALYTIC CONTINUATION -- 4.1. Introduction -- 4.2. A System of Linear Equations in φ(J | Λ) -- 4.3. Uniqueness of Solution -- 4.4. Meromorphicity of φ(J | Λ) and the Eisenstein Series -- CHAPTER 5 FUNCTIONAL EQUATIONS -- 5.1. Introduction -- 5.2. Functional Equations -- CHAPTER 6 THE GENERAL CASE OF SEVERAL CUSPS -- 6.1. Introduction -- 6.2. The Definition and Basic Properties of the Eisenstein Series -- 6.3. The Compact Operators -- 6.4. Fredholm Equations -- 6.5. Analytic Continuation -- 6.6. Functional Equations -- REFERENCES.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- TABLE OF CONTENTS -- INTRODUCTION -- CHAPTER 1 THE DEFINITION AND BASIC PROPERTIES OF THE EISENSTEIN SERIES -- 1.1. Introduction -- 1.2. Prerequisites for the Eisenstein Series -- 1.3. The Eisenstein Series -- 1.4. Selberg's Eigenfunction Principle -- CHAPTER 2 THE COMPACT OPERATORS -- 2.1. Introduction -- 2.2. Construction of Kernel -- 2.3. Convolutions on L[sup(2)](Γ \ G) -- 2.4. Definition of Compact Operators -- CHAPTER 3 FREDHOLM EQUATIONS -- 3.1. Introduction -- 3.2. The Constant Terms of Eisenstein Series -- 3.3. Convolution with Functions Depending on a Complex Parameter -- 3.4. Projection of the Constant Terms of Eisenstein Series -- 3.5. Truncation of the Eisenstein Series -- 3.6. Holomorphicity of Fredholm Solutions -- CHAPTER 4 ANALYTIC CONTINUATION -- 4.1. Introduction -- 4.2. A System of Linear Equations in φ(J | Λ) -- 4.3. Uniqueness of Solution -- 4.4. Meromorphicity of φ(J | Λ) and the Eisenstein Series -- CHAPTER 5 FUNCTIONAL EQUATIONS -- 5.1. Introduction -- 5.2. Functional Equations -- CHAPTER 6 THE GENERAL CASE OF SEVERAL CUSPS -- 6.1. Introduction -- 6.2. The Definition and Basic Properties of the Eisenstein Series -- 6.3. The Compact Operators -- 6.4. Fredholm Equations -- 6.5. Analytic Continuation -- 6.6. Functional Equations -- REFERENCES.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.