ORPP logo
Image from Google Jackets

Homotopy Invariant Algebraic Structures : A Conference in Honor of Mike Boardman.

By: Contributor(s): Material type: TextTextSeries: Contemporary MathematicsPublisher: Providence : American Mathematical Society, 1999Copyright date: ©1998Edition: 1st edDescription: 1 online resource (392 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780821878293
Subject(s): Genre/Form: Additional physical formats: Print version:: Homotopy Invariant Algebraic StructuresDDC classification:
  • 514/.24
LOC classification:
  • QA612.7 -- .A57 1998eb
Online resources:
Contents:
Intro -- Contents -- Preface -- Publications of J. Michael Boardman -- Some History -- Letter from R. Thorn -- Higher homotopies, Pacts, and the bar construction -- The hare and the tortoise -- Cobordism of involutions revisited, revisited -- Grafting Boardman's cherry trees to quantum field theory -- My time as Mike Boardman's student and our work on infinite loop spaces -- Research Papers -- Stabilizing the lower operations for mod two cohomology -- Conditionally convergent spectral sequences -- Introduction -- Part I - Tools -- Part II - Convergence -- Part III - Examples -- References -- On K( n )-equivalences of spaces -- Tesselations of moduli spaces and the mosaic operad -- Hopf rings, Dieudonné modules, and E*Ω2S3 -- The structure of the Bousfield lattice -- Transfinite spectral sequences -- The Z/p-equivariant complex cobordism ring -- Hopf constructions, Samelson products, and suspension maps -- Embedding homotopy spheres and the Kervaire invariant -- Adjoining roots of unity to E∞ ring spectra in good cases - a remark -- Grothendieck topology and the Picard group of a complex orbifold -- Formal schemes and formal groups -- 1. Introduction -- 2. Schemes -- 3. Non-affine schemes -- 4. Formal schemes -- 5. Formal curves -- 6. Formal groups -- 7. Ordinary formal groups -- 8. Formal schemes in algebraic topology -- References -- Simplicial commutative Fp-algebras through the looking-glass of the Fp-local spaces -- The swiss-cheese operad -- K(n + 1) equivalence implies K(n) equivalence.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Preface -- Publications of J. Michael Boardman -- Some History -- Letter from R. Thorn -- Higher homotopies, Pacts, and the bar construction -- The hare and the tortoise -- Cobordism of involutions revisited, revisited -- Grafting Boardman's cherry trees to quantum field theory -- My time as Mike Boardman's student and our work on infinite loop spaces -- Research Papers -- Stabilizing the lower operations for mod two cohomology -- Conditionally convergent spectral sequences -- Introduction -- Part I - Tools -- Part II - Convergence -- Part III - Examples -- References -- On K( n )-equivalences of spaces -- Tesselations of moduli spaces and the mosaic operad -- Hopf rings, Dieudonné modules, and E*Ω2S3 -- The structure of the Bousfield lattice -- Transfinite spectral sequences -- The Z/p-equivariant complex cobordism ring -- Hopf constructions, Samelson products, and suspension maps -- Embedding homotopy spheres and the Kervaire invariant -- Adjoining roots of unity to E∞ ring spectra in good cases - a remark -- Grothendieck topology and the Picard group of a complex orbifold -- Formal schemes and formal groups -- 1. Introduction -- 2. Schemes -- 3. Non-affine schemes -- 4. Formal schemes -- 5. Formal curves -- 6. Formal groups -- 7. Ordinary formal groups -- 8. Formal schemes in algebraic topology -- References -- Simplicial commutative Fp-algebras through the looking-glass of the Fp-local spaces -- The swiss-cheese operad -- K(n + 1) equivalence implies K(n) equivalence.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.