ORPP logo
Image from Google Jackets

Antimicrobial Peptides : Discovery, Design and Novel Therapeutic Strategies.

By: Material type: TextTextPublisher: Oxford : CAB International, 2017Copyright date: ©2017Edition: 2nd edDescription: 1 online resource (377 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781786390417
Subject(s): Genre/Form: Additional physical formats: Print version:: Antimicrobial PeptidesDDC classification:
  • 615.1
LOC classification:
  • RS431.P37 .A58 2017
Online resources:
Contents:
Cover Page -- Title Page -- Copyright Page -- Contents -- Contributors -- Preface -- Introduction to the Second Edition -- PART I: OVERVIEW OF ANTIMICROBIAL PEPTIDES -- 1 Discovery, Classification and Functional Diversity of Antimicrobial Peptides -- 1.1 A Brief Timeline of Discovery -- 1.2 Nomenclature of Antimicrobial Peptides -- 1.3 Classification of Antimicrobial Peptides -- 1.3.1 Source kingdoms -- 1.3.2 Peptide synthesis machinery -- 1.3.3 Chemical modifications -- 1.3.4 Peptide charge, length and hydrophobic content -- 1.3.5 Three-dimensional structures -- 1.3.6 Unified peptide classification based on polypeptide chain bonding patterns -- 1.3.7 Peptide binding targets and mechanisms of action -- 1.4 Functional Diversity and Terminology of Antimicrobial Peptides -- 1.4.1 Antimicrobial peptides -- 1.4.2 Host defence peptides -- 1.4.3 Innate immune peptides -- 1.5 Concluding Remarks -- PART II: NATURAL TEMPLATES FOR PEPTIDE ENGINEERING -- 2 Structural and Functional Diversity of Cathelicidins -- 2.1 Introduction -- 2.2 Discovery of Cathelicidins -- 2.3 Evolution, Structural Diversity and Features of the Proregion -- 2.3.1 Evolution -- 2.3.2 Structural diversity -- 2.3.3 Features of the proregion -- 2.4 Expression and Processing -- 2.5 Structure-dependent Mode of Action -- 2.6 Pleiotropic Roles of Cathelicidins in Host Defence and Potential Applications -- 2.7 Conclusions -- 3 Disulfide-linked Defensins -- 3.1 Overview -- 3.1.1 Introduction to disulfide-linked defensins -- 3.1.2 Mechanisms of action -- 3.1.3 Structural features of defensins -- 3.2 Vertebrate Defensins -- 3.2.1 β-defensins -- 3.2.2 α-defensins -- 3.2.3 θ-defensins -- 3.3 Arthropod Defensins -- 3.3.1 Insect defensins -- 3.3.2 Therapeutic potential of insect defensins -- 3.3.3 Antiparasitic activity of arthropod defensin peptides -- 3.3.4 Horseshoe crab and oyster big-defensins.
3.4 Plant Defensins -- 3.5 When is a Disulfide-linked Antimicrobial Peptide not a Defensin? -- 3.6 Therapeutic Potential of Synthetic Disulfide-linked Defensin Peptides -- 3.7 Summary -- 3.7.1 Phylogenetic diversity of defensin gene expression -- 3.7.2 Defensin activity -- 4 Lantibiotics: Bioengineering and Applications -- 4.1 Lantibiotics: Background, Structure, Mode of Action and Classification -- 4.2 Lantibiotics as Clinical and Chemotherapeutic Agents -- 4.3 Lantibiotics as Biopreservatives -- 4.4 Lantibiotic Bioengineering and Synthetic Engineering -- 4.4.1 In vivo engineering -- 4.4.2 (Semi)Synthetic engineering -- 4.5 Future Outlook and Conclusion -- PART III: EXPANDING PEPTIDE SPACE: COMBINATORIAL LIBRARY, GENOME-BASED PREDICTION AND DE NOVO DESIGN -- 5 Discovery of Novel Antimicrobial Peptides Using Combinatorial Chemistry and High-throughput Screening -- 5.1 The Interfacial Activity Model of AMP Activity -- 5.2 Combinatorial Chemistry Methods -- 5.2.1 Overview of library synthesis -- 5.2.2 Non-indexed methods -- 5.2.3 Indexed methods -- 5.3 High-throughput Screening -- 5.3.1 Biological assays -- 5.3.2 Non-biological assays -- 5.3.3 Parallel screening for selection of discrete characteristics -- 5.4 Accomplishments -- 5.4.1 Beyond high-throughput screening -- 5.5 Future Directions -- 6 Prediction and Design of Antimicrobial Peptides: Methods and Applications to Genomes and Proteomes -- 6.1 Antimicrobial Peptide Prediction -- 6.1.1 Prediction based on mature peptides -- 6.1.2 Prediction based on highly conserved propeptide sequences -- 6.1.3 Prediction based on both propeptides and mature peptides -- 6.1.4 Prediction based on the processing enzymes or transporters -- 6.1.5 Genomic context-based prediction -- 6.1.6 Applications to genomes and proteomes -- 6.2 Database-aided Peptide Design and Improvement.
6.2.1 Anti-HIV and anti-MRSA peptide screening -- 6.2.2 Sequence shuffling and the combinatorial library approach -- 6.2.3 The hybrid approach and grammar-based peptide design -- 6.2.4 De novo and database-aided peptide design -- 6.3 Computational Design of Novel AMPs -- 6.4 Prediction Based on Biophysical Approaches -- 6.5 Concluding Remarks -- PART IV: MECHANISMS OF ACTION: BIOPHYSICS AND STRUCTURAL BIOLOGY -- 7 Antimicrobial Peptides: Multiple Mechanisms against a Variety of Targets -- 7.1 Target Selectivity of Antimicrobial Peptides -- 7.2 Membrane-lytic Antimicrobial Peptides -- 7.3 Intracellular Targets of Antimicrobial Peptides -- 7.4 LPS and LTA Neutralization by Antimicrobial Peptides -- 7.5 Antibiofilm Antimicrobial Peptides -- 7.6 Antifungal Antimicrobial Peptides -- 7.7 Anticancer Antimicrobial Peptides -- 7.8 Antiviral Antimicrobial Peptides -- 7.9 Antimicrobial Peptide Modification and How It Affects the Mode of Action -- 7.9.1 Lipopeptides -- 7.9.2 Modification of amino acids content -- 7.10 Conclusion -- 8 Microbial Membranes and the Action of Antimicrobial Peptides -- 8.1 Introduction -- 8.2 Physicochemical Properties of AMPs and the Molecular Organization of The Cell Envelope of Different Microorganisms -- 8.3 The Role of Cell Wall Components on AMP Toxicity -- 8.4 Membrane Lipid Composition and AMP Sensitivity -- 8.5 Antimicrobial Agents that Promote Clustering of Anionic Lipids -- 8.6 Synergistic Action of AMPs and Other Antimicrobial Agents -- 8.7 Summary and Future Perspective -- 9 Non-membranolytic Mechanisms of Action of Antimicrobial Peptides - Novel Therapeutic Opportunities? -- 9.1 Introduction -- 9.2 Intracellular Mode of Action -- 9.2.1 Inhibition of molecular chaperones and of protein synthesis -- 9.2.2 Binding to DNA and inhibition of transcription/replication -- 9.3 Cell Surface Modes of Action.
9.3.1 Cell wall inhibition -- 9.3.2 Inhibition of cytokinesis -- 9.4 Other Membrane-independent Mechanisms of Bacterial Killing -- 9.5 Immune Modulatory Effects -- 9.6 Towards Novel Therapeutic Opportunities -- 9.7 Concluding Remarks -- 10 Structural Insight into the Mechanisms of Action of Antimicrobial Peptides and Structure-based Design -- 10.1 Introduction to Structural Methods and Membrane Models -- 10.2 Three-dimensional Structures of Antimicrobial Peptides -- 10.2.1 α-helical AMPs -- 10.2.2 β-sheet AMPs -- 10.2.3 αβ-AMPs -- 10.2.4 Non-αβ AMPs -- 10.3 Structure-based Peptide Design -- 10.3.1 Structural basis for the improvement of peptide druggability -- 10.3.2 Stable scaffold-based grafting -- 10.4 Concluding Remarks -- PART V: NOVEL THERAPEUTIC STRATEGIES: SYNERGY, IMMUNE MODULATION, SURFACE COATING AND DELIVERY -- 11 Synergy of Antimicrobial Peptides -- 11.1 Introduction -- 11.2 Principles of Synergy of Antimicrobial Peptides -- 11.3 How Antimicrobial Peptides Synergize to Kill Microorganisms -- 11.4 Synergism of Antimicrobial Peptides with Conventional Antibiotics -- 11.5 Synergy with AMP Analogues -- 11.6 Conclusion -- 12 Surface Immobilization of Antimicrobial Peptides to Prevent Biofilm Formation -- 12.1 Introduction -- 12.2 Surface Coating Methods -- 12.2.1 Non-peptide microbicidal materials -- 12.2.2 Antibiotic immobilized surfaces -- 12.2.3 Antimicrobial peptide immobilization -- 12.3 Chemical and Physical Characterization of Peptide Coated Surfaces -- 12.4 Antimicrobial and Antibiofilm Activities of Peptide Coated Surfaces -- 12.5 Mechanism of Action of Immobilized Peptides -- 12.6 Biocompatibility -- 12.7 Conclusions and Future Outlook -- 13 Sustained Delivery of Cathelicidin Antimicrobial Peptide-inducing Compounds to Minimize Infection and Enhance Wound Healing -- 13.1 Introduction.
13.2 The Role of the CAMP Gene in Protection against Infection -- 13.3 LL-37 Modulates the Host Immune Response -- 13.3.1 Formyl peptide receptor 2 (FPR2) -- 13.3.2 Purinergic receptor P2X7 -- 13.3.3 Toll-like receptors (TLRs) -- 13.3.4 Other transmembrane receptors -- 13.4 Function of Vitamin D Signalling in Normal Skin Homeostasis -- 13.5 The Role of Vitamin D and CAMP/LL-37 in Cutaneous Wound Healing -- 13.6 Induction of CAMP Gene Expression by Other Natural Compounds -- 13.7 Preventing Infections and Improving Wound Healing with Vitamin D3 and Other Immune Boosting Compounds -- 13.8 Summary -- 14 Immunomodulatory Activities of Cationic Host Defence Peptides and Novel Therapeutic Strategies -- 14.1 Classical AMPs and HDPs -- 14.1.1 Defensins -- 14.1.2 Cathelicidins -- 14.1.3 Histatins and liver-expressed antimicrobial peptides (LEAPs) -- 14.1.4 Modified and synthetic HDPs -- 14.2 Hormones and Neuropeptides: The New HDPs -- 14.2.1 Natriuretic peptides -- 14.2.2 Secretin family -- 14.2.3 Calcitonin family -- 14.2.4 Somatostatin family -- 14.2.5 Pro-opiomelanocortin derivatives -- 14.3 Activities of HDPs -- 14.3.1 Anti-infective/immunomodulatory -- 14.3.2 Antibiofilm -- 14.3.3 Anticancer -- 14.3.4 Wound healing and angiogenesis -- 14.3.5 Cardiovascular disease and metabolism -- 14.3.6 Adjuvants -- 14.4 HDPs as Therapeutics: Peptides in Clinical Trials -- 14.4.1 Challenges -- 14.5 Conclusions -- Index.
Summary: This thoroughly updated new edition lays the foundations for studying antimicrobial peptides (AMPs), including a discovery timeline, terminology, nomenclature and classifications. It covers current advances in research, examines state-of-the-art technologies, and describes new methods and strategies for AMP prediction, design and applications.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover Page -- Title Page -- Copyright Page -- Contents -- Contributors -- Preface -- Introduction to the Second Edition -- PART I: OVERVIEW OF ANTIMICROBIAL PEPTIDES -- 1 Discovery, Classification and Functional Diversity of Antimicrobial Peptides -- 1.1 A Brief Timeline of Discovery -- 1.2 Nomenclature of Antimicrobial Peptides -- 1.3 Classification of Antimicrobial Peptides -- 1.3.1 Source kingdoms -- 1.3.2 Peptide synthesis machinery -- 1.3.3 Chemical modifications -- 1.3.4 Peptide charge, length and hydrophobic content -- 1.3.5 Three-dimensional structures -- 1.3.6 Unified peptide classification based on polypeptide chain bonding patterns -- 1.3.7 Peptide binding targets and mechanisms of action -- 1.4 Functional Diversity and Terminology of Antimicrobial Peptides -- 1.4.1 Antimicrobial peptides -- 1.4.2 Host defence peptides -- 1.4.3 Innate immune peptides -- 1.5 Concluding Remarks -- PART II: NATURAL TEMPLATES FOR PEPTIDE ENGINEERING -- 2 Structural and Functional Diversity of Cathelicidins -- 2.1 Introduction -- 2.2 Discovery of Cathelicidins -- 2.3 Evolution, Structural Diversity and Features of the Proregion -- 2.3.1 Evolution -- 2.3.2 Structural diversity -- 2.3.3 Features of the proregion -- 2.4 Expression and Processing -- 2.5 Structure-dependent Mode of Action -- 2.6 Pleiotropic Roles of Cathelicidins in Host Defence and Potential Applications -- 2.7 Conclusions -- 3 Disulfide-linked Defensins -- 3.1 Overview -- 3.1.1 Introduction to disulfide-linked defensins -- 3.1.2 Mechanisms of action -- 3.1.3 Structural features of defensins -- 3.2 Vertebrate Defensins -- 3.2.1 β-defensins -- 3.2.2 α-defensins -- 3.2.3 θ-defensins -- 3.3 Arthropod Defensins -- 3.3.1 Insect defensins -- 3.3.2 Therapeutic potential of insect defensins -- 3.3.3 Antiparasitic activity of arthropod defensin peptides -- 3.3.4 Horseshoe crab and oyster big-defensins.

3.4 Plant Defensins -- 3.5 When is a Disulfide-linked Antimicrobial Peptide not a Defensin? -- 3.6 Therapeutic Potential of Synthetic Disulfide-linked Defensin Peptides -- 3.7 Summary -- 3.7.1 Phylogenetic diversity of defensin gene expression -- 3.7.2 Defensin activity -- 4 Lantibiotics: Bioengineering and Applications -- 4.1 Lantibiotics: Background, Structure, Mode of Action and Classification -- 4.2 Lantibiotics as Clinical and Chemotherapeutic Agents -- 4.3 Lantibiotics as Biopreservatives -- 4.4 Lantibiotic Bioengineering and Synthetic Engineering -- 4.4.1 In vivo engineering -- 4.4.2 (Semi)Synthetic engineering -- 4.5 Future Outlook and Conclusion -- PART III: EXPANDING PEPTIDE SPACE: COMBINATORIAL LIBRARY, GENOME-BASED PREDICTION AND DE NOVO DESIGN -- 5 Discovery of Novel Antimicrobial Peptides Using Combinatorial Chemistry and High-throughput Screening -- 5.1 The Interfacial Activity Model of AMP Activity -- 5.2 Combinatorial Chemistry Methods -- 5.2.1 Overview of library synthesis -- 5.2.2 Non-indexed methods -- 5.2.3 Indexed methods -- 5.3 High-throughput Screening -- 5.3.1 Biological assays -- 5.3.2 Non-biological assays -- 5.3.3 Parallel screening for selection of discrete characteristics -- 5.4 Accomplishments -- 5.4.1 Beyond high-throughput screening -- 5.5 Future Directions -- 6 Prediction and Design of Antimicrobial Peptides: Methods and Applications to Genomes and Proteomes -- 6.1 Antimicrobial Peptide Prediction -- 6.1.1 Prediction based on mature peptides -- 6.1.2 Prediction based on highly conserved propeptide sequences -- 6.1.3 Prediction based on both propeptides and mature peptides -- 6.1.4 Prediction based on the processing enzymes or transporters -- 6.1.5 Genomic context-based prediction -- 6.1.6 Applications to genomes and proteomes -- 6.2 Database-aided Peptide Design and Improvement.

6.2.1 Anti-HIV and anti-MRSA peptide screening -- 6.2.2 Sequence shuffling and the combinatorial library approach -- 6.2.3 The hybrid approach and grammar-based peptide design -- 6.2.4 De novo and database-aided peptide design -- 6.3 Computational Design of Novel AMPs -- 6.4 Prediction Based on Biophysical Approaches -- 6.5 Concluding Remarks -- PART IV: MECHANISMS OF ACTION: BIOPHYSICS AND STRUCTURAL BIOLOGY -- 7 Antimicrobial Peptides: Multiple Mechanisms against a Variety of Targets -- 7.1 Target Selectivity of Antimicrobial Peptides -- 7.2 Membrane-lytic Antimicrobial Peptides -- 7.3 Intracellular Targets of Antimicrobial Peptides -- 7.4 LPS and LTA Neutralization by Antimicrobial Peptides -- 7.5 Antibiofilm Antimicrobial Peptides -- 7.6 Antifungal Antimicrobial Peptides -- 7.7 Anticancer Antimicrobial Peptides -- 7.8 Antiviral Antimicrobial Peptides -- 7.9 Antimicrobial Peptide Modification and How It Affects the Mode of Action -- 7.9.1 Lipopeptides -- 7.9.2 Modification of amino acids content -- 7.10 Conclusion -- 8 Microbial Membranes and the Action of Antimicrobial Peptides -- 8.1 Introduction -- 8.2 Physicochemical Properties of AMPs and the Molecular Organization of The Cell Envelope of Different Microorganisms -- 8.3 The Role of Cell Wall Components on AMP Toxicity -- 8.4 Membrane Lipid Composition and AMP Sensitivity -- 8.5 Antimicrobial Agents that Promote Clustering of Anionic Lipids -- 8.6 Synergistic Action of AMPs and Other Antimicrobial Agents -- 8.7 Summary and Future Perspective -- 9 Non-membranolytic Mechanisms of Action of Antimicrobial Peptides - Novel Therapeutic Opportunities? -- 9.1 Introduction -- 9.2 Intracellular Mode of Action -- 9.2.1 Inhibition of molecular chaperones and of protein synthesis -- 9.2.2 Binding to DNA and inhibition of transcription/replication -- 9.3 Cell Surface Modes of Action.

9.3.1 Cell wall inhibition -- 9.3.2 Inhibition of cytokinesis -- 9.4 Other Membrane-independent Mechanisms of Bacterial Killing -- 9.5 Immune Modulatory Effects -- 9.6 Towards Novel Therapeutic Opportunities -- 9.7 Concluding Remarks -- 10 Structural Insight into the Mechanisms of Action of Antimicrobial Peptides and Structure-based Design -- 10.1 Introduction to Structural Methods and Membrane Models -- 10.2 Three-dimensional Structures of Antimicrobial Peptides -- 10.2.1 α-helical AMPs -- 10.2.2 β-sheet AMPs -- 10.2.3 αβ-AMPs -- 10.2.4 Non-αβ AMPs -- 10.3 Structure-based Peptide Design -- 10.3.1 Structural basis for the improvement of peptide druggability -- 10.3.2 Stable scaffold-based grafting -- 10.4 Concluding Remarks -- PART V: NOVEL THERAPEUTIC STRATEGIES: SYNERGY, IMMUNE MODULATION, SURFACE COATING AND DELIVERY -- 11 Synergy of Antimicrobial Peptides -- 11.1 Introduction -- 11.2 Principles of Synergy of Antimicrobial Peptides -- 11.3 How Antimicrobial Peptides Synergize to Kill Microorganisms -- 11.4 Synergism of Antimicrobial Peptides with Conventional Antibiotics -- 11.5 Synergy with AMP Analogues -- 11.6 Conclusion -- 12 Surface Immobilization of Antimicrobial Peptides to Prevent Biofilm Formation -- 12.1 Introduction -- 12.2 Surface Coating Methods -- 12.2.1 Non-peptide microbicidal materials -- 12.2.2 Antibiotic immobilized surfaces -- 12.2.3 Antimicrobial peptide immobilization -- 12.3 Chemical and Physical Characterization of Peptide Coated Surfaces -- 12.4 Antimicrobial and Antibiofilm Activities of Peptide Coated Surfaces -- 12.5 Mechanism of Action of Immobilized Peptides -- 12.6 Biocompatibility -- 12.7 Conclusions and Future Outlook -- 13 Sustained Delivery of Cathelicidin Antimicrobial Peptide-inducing Compounds to Minimize Infection and Enhance Wound Healing -- 13.1 Introduction.

13.2 The Role of the CAMP Gene in Protection against Infection -- 13.3 LL-37 Modulates the Host Immune Response -- 13.3.1 Formyl peptide receptor 2 (FPR2) -- 13.3.2 Purinergic receptor P2X7 -- 13.3.3 Toll-like receptors (TLRs) -- 13.3.4 Other transmembrane receptors -- 13.4 Function of Vitamin D Signalling in Normal Skin Homeostasis -- 13.5 The Role of Vitamin D and CAMP/LL-37 in Cutaneous Wound Healing -- 13.6 Induction of CAMP Gene Expression by Other Natural Compounds -- 13.7 Preventing Infections and Improving Wound Healing with Vitamin D3 and Other Immune Boosting Compounds -- 13.8 Summary -- 14 Immunomodulatory Activities of Cationic Host Defence Peptides and Novel Therapeutic Strategies -- 14.1 Classical AMPs and HDPs -- 14.1.1 Defensins -- 14.1.2 Cathelicidins -- 14.1.3 Histatins and liver-expressed antimicrobial peptides (LEAPs) -- 14.1.4 Modified and synthetic HDPs -- 14.2 Hormones and Neuropeptides: The New HDPs -- 14.2.1 Natriuretic peptides -- 14.2.2 Secretin family -- 14.2.3 Calcitonin family -- 14.2.4 Somatostatin family -- 14.2.5 Pro-opiomelanocortin derivatives -- 14.3 Activities of HDPs -- 14.3.1 Anti-infective/immunomodulatory -- 14.3.2 Antibiofilm -- 14.3.3 Anticancer -- 14.3.4 Wound healing and angiogenesis -- 14.3.5 Cardiovascular disease and metabolism -- 14.3.6 Adjuvants -- 14.4 HDPs as Therapeutics: Peptides in Clinical Trials -- 14.4.1 Challenges -- 14.5 Conclusions -- Index.

This thoroughly updated new edition lays the foundations for studying antimicrobial peptides (AMPs), including a discovery timeline, terminology, nomenclature and classifications. It covers current advances in research, examines state-of-the-art technologies, and describes new methods and strategies for AMP prediction, design and applications.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.