ORPP logo
Image from Google Jackets

Membrane Microdomain Regulation of Neuron Signalling.

By: Material type: TextTextPublisher: New York : Nova Science Publishers, Incorporated, 2008Copyright date: ©2008Edition: 1st edDescription: 1 online resource (105 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781616681258
Subject(s): Genre/Form: Additional physical formats: Print version:: Membrane Microdomain Regulation of Neuron SignallingDDC classification:
  • 612.8/2
LOC classification:
  • QP363 -- .W35 2008eb
Online resources:
Contents:
Intro -- MEMBRANE MICRODOMAINREGULATION OF NEURONSIGNALING -- NOTICE TO THE READER -- Contents -- Preface -- Introduction -- Membrane Studies:The Problem of Order -- 2.1. The Globule Model and the Membrane(1800-1850) -- 2.2. The German Reaction:The Membraneless State Model (1850-1890) -- 2.3. Early Models of the Cell Membrane(1895-1925) -- 2.4. The Davson-Danielli and FluidMosaic Models -- 2.5. The Fluid Mosaic Model Questioned:Chistyakov and Kinnunen -- 2.6. Ole Mouritsen and Myer Bloom:The Hydrophobic Mismatch (HM) Model -- 2.7. Hydrophobic Mismatch andNeural Evolution: Wallace and Price -- 2.8. Limitations of the HydrophobicMismatch (HM) Model -- 2.9. The Ordered Membrane:Fluorescence Studies -- Membrane MicrodomainRegulation of Neuron Signaling -- 3.1. The Resting Membrane is in aLiquid-Ordered State -- 3.2. Neural-Membrane MicrodomainsRespond to an Electric Field -- 3.3. Membrane Ethenes Are Polarized -- 3.3.1. First Computational Study: Rationale -- 3.3.2. First Computational Study: Method -- 3.3.3. First Computational Study: Results -- 3.3.4. Second Computational Study: Rationale -- 3.3.5. Second Computational Study: Method -- 3.3.5. Second Computational Study: Results -- 3.4. Membrane Dipoles InteractElectrostatically with Ion-Channel ChargeCenters -- 3.5. The Reset Mechanism: The Reversal ofField Effects -- Membrane Microdomains andNeural Impulse Propagation: FieldEffects in Cytoskeleton Corrals -- 4.1. Conduction Failure in Neurons:Evidence and Models -- 4.2. Regulated Lipid Diffusion throughCytoskeleton Gates -- 4.3. The KA Potassium Channel andNeural Impulse Regulation -- 4.4. Implications of the Model:Molecular Networks in the Neuron -- Toward Membrane MolecularMachines: Implications for theStudy ofNeural Disease -- 5.1. Artificial Model:Metallized Nanowire in a SupportedMembrane.
5.2. A Role for Artificial Membranes inModeling Neural Disease -- 5.3. Implications of the Proposed Model -- Conclusion -- Appendix: Table and Figures -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- MEMBRANE MICRODOMAINREGULATION OF NEURONSIGNALING -- NOTICE TO THE READER -- Contents -- Preface -- Introduction -- Membrane Studies:The Problem of Order -- 2.1. The Globule Model and the Membrane(1800-1850) -- 2.2. The German Reaction:The Membraneless State Model (1850-1890) -- 2.3. Early Models of the Cell Membrane(1895-1925) -- 2.4. The Davson-Danielli and FluidMosaic Models -- 2.5. The Fluid Mosaic Model Questioned:Chistyakov and Kinnunen -- 2.6. Ole Mouritsen and Myer Bloom:The Hydrophobic Mismatch (HM) Model -- 2.7. Hydrophobic Mismatch andNeural Evolution: Wallace and Price -- 2.8. Limitations of the HydrophobicMismatch (HM) Model -- 2.9. The Ordered Membrane:Fluorescence Studies -- Membrane MicrodomainRegulation of Neuron Signaling -- 3.1. The Resting Membrane is in aLiquid-Ordered State -- 3.2. Neural-Membrane MicrodomainsRespond to an Electric Field -- 3.3. Membrane Ethenes Are Polarized -- 3.3.1. First Computational Study: Rationale -- 3.3.2. First Computational Study: Method -- 3.3.3. First Computational Study: Results -- 3.3.4. Second Computational Study: Rationale -- 3.3.5. Second Computational Study: Method -- 3.3.5. Second Computational Study: Results -- 3.4. Membrane Dipoles InteractElectrostatically with Ion-Channel ChargeCenters -- 3.5. The Reset Mechanism: The Reversal ofField Effects -- Membrane Microdomains andNeural Impulse Propagation: FieldEffects in Cytoskeleton Corrals -- 4.1. Conduction Failure in Neurons:Evidence and Models -- 4.2. Regulated Lipid Diffusion throughCytoskeleton Gates -- 4.3. The KA Potassium Channel andNeural Impulse Regulation -- 4.4. Implications of the Model:Molecular Networks in the Neuron -- Toward Membrane MolecularMachines: Implications for theStudy ofNeural Disease -- 5.1. Artificial Model:Metallized Nanowire in a SupportedMembrane.

5.2. A Role for Artificial Membranes inModeling Neural Disease -- 5.3. Implications of the Proposed Model -- Conclusion -- Appendix: Table and Figures -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.