ORPP logo
Image from Google Jackets

Photonics and Electronics with Germanium.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (335 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527650231
Subject(s): Genre/Form: Additional physical formats: Print version:: Photonics and Electronics with GermaniumDDC classification:
  • 620.117
LOC classification:
  • TA1520 .W384 2015
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Chapter 1 Defects in Germanium -- 1.1 Introduction -- 1.2 Methods for Studying Defects and Impurities -- 1.2.1 Experimental Techniques -- 1.2.2 First-Principles Calculations -- 1.3 Impurities -- 1.3.1 Shallow Dopants -- 1.3.2 Hydrogen -- 1.4 Intrinsic Defects -- 1.4.1 Vacancies -- 1.4.1.1 Electronic Structure -- 1.4.1.2 Formation Energy -- 1.4.1.3 Defect Levels -- 1.4.1.4 Comparison with Silicon -- 1.4.1.5 Diffusion -- 1.4.2 Self-Interstitials -- 1.4.3 Dangling Bonds -- 1.4.3.1 Electronic Levels -- 1.4.4 Impact on Devices -- 1.5 Summary -- References -- Chapter 2 Hydrogen in Ge -- 2.1 Introduction -- 2.2 Properties of Hydrogen in Ge -- 2.2.1 Incorporation of Hydrogen -- 2.2.2 Isolated Hydrogen -- 2.2.3 Hydrogen Dimers -- 2.2.3.1 Interstitial H2 -- 2.2.3.2 The H2* Defect -- 2.2.3.3 H2 Molecules in Hydrogen-Induced Platelets -- 2.2.3.4 Complexes of Hydrogen with Other Defects -- 2.3 Hydrogen Passivation of Shallow Donors and Acceptors in Ge -- 2.3.1 Donor Passivation -- 2.3.2 Hydrogen in p-type Ge -- 2.3.3 Schottky Contacts on p-type Ge -- 2.4 Summary -- Acknowledgments -- References -- Chapter 3 Epitaxy of Ge Layers on Blanket and Patterned Si(001) for Nanoelectronics and Optoelectronics -- 3.1 General Introduction -- 3.2 Epitaxial Growth of Ge Thick Layers on Si(001) -- 3.2.1 Growth Protocol and Kinetics -- 3.2.2 Surface Morphology -- 3.2.3 Strain State -- 3.2.4 Defects Density and Distribution in the Ge Layers -- 3.3 Ge Surface Passivation with Si -- 3.3.1 Passivation Protocol -- 3.3.2 Surface and Film Morphology -- 3.4 SEG of Ge in Cavities at the End of Optical Waveguides -- 3.5 Fabrication, Structural, and Electrical Properties of Compressively Strained Ge-on-Insulator Substrates -- 3.5.1 The c-Ge on Si0.15Ge0.85 Process Flow.
3.5.2 Structural Properties of the c-Ge on Si0.15Ge0.85 Stacks as a Function of the Ge Layer Thickness -- 3.5.2.1 Surface Morphology -- 3.5.2.2 Macroscopic Strain State -- 3.5.2.3 Defect Density -- 3.5.3 Properties of the c-GeOI Substrates -- 3.5.3.1 Structural Properties -- 3.5.3.2 Electrical Properties -- 3.5.3.3 Benchmark -- 3.6 Conclusion and Perspectives -- References -- Chapter 4 Heavy Doping in Si1-xGex Epitaxial Growth by Chemical Vapor Deposition -- 4.1 Introduction -- 4.2 In situ Doping of B, P, and C in Si1-x Gex Epitaxial Growth -- 4.2.1 In situ Doping Characteristics in Si1-xGex Epitaxial Growth -- 4.2.2 Relationship between Carrier and Impurity (B or P) Concentrations in Si1-x-yGexCy Epitaxial Film -- 4.3 Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.1 Boron Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.1.1 Surface Reaction of B2H6 on Si1-xGex(100) -- 4.3.1.2 Si1-xGex Epitaxial Growth over B Atomic Layer Already Formed on the (100) Surface -- 4.3.2 Phosphorus Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.2.1 Surface Reaction of PH3 on Si1-xGex(100) -- 4.3.2.2 Si1-xGex Epitaxial Growth over P Atomic Layer Already-Formed on the (100) Surface -- 4.3.3 Carbon Atomic-Layer Doping in Si/Si1-xGex/Si(100) Structure -- 4.3.3.1 Surface Reaction of SiH3CH3 on Si1-xGex(100) -- 4.3.3.2 Si1-xGex Epitaxial Growth over C Atomic Layer Already Formed on the (100) Surface -- 4.4 Conclusion and Future Trends -- Acknowledgments -- References -- Chapter 5 FEOL Integration of Silicon- and Germanium-Based Photonics in Bulk-Silicon, High-Performance SiGe: C-BiCMOS Processes -- 5.1 Introduction -- 5.2 Local SOI Technology -- 5.3 Passive Silicon Waveguide Technology -- 5.4 Modulator Technology -- 5.5 Photonics Integration in BiCMOS Flow -- 5.6 Germanium Photo Detector - Process Integration Challenges.
5.7 Example Circuit - 10 Gbit s-1 Modulator with Driver -- 5.8 Outlook -- Acknowledgments -- References -- Chapter 6 Ge Condensation and Its Device Application -- 6.1 Principle of Ge Condensation and Fabrication Process -- 6.1.1 Basic Concept of Ge Condensation Process -- 6.1.2 Critical Process Parameters -- 6.2 GOI Film Characterization -- 6.2.1 Thickness Control -- 6.2.2 Residual Impurity -- 6.2.3 Strain Behavior -- 6.2.4 Defects and Dislocations -- 6.2.5 Electrical Properties -- 6.3 Device Application -- 6.3.1 Planar GOI MOSFET -- 6.3.2 MOSFETs Using Local Ge Condensation -- 6.3.2.1 Planar MOSFETs -- 6.3.2.2 Multi-gate and Nanowire MOSFETs -- 6.3.3 Stressor -- 6.3.4 Photonic Devices -- 6.4 Summary -- References -- Chapter 7 Waveguide Design, Fabrication, and Active Device Integration -- 7.1 Introduction -- 7.2 Design of Silicon Photonic Wire Waveguiding System -- 7.2.1 Guided Modes of Si Photonic Wire Waveguide -- 7.2.2 External Coupling of Silicon Photonic Wire Waveguide -- 7.2.3 Coupling to Ge Photonic Devices -- 7.3 Fabrication -- 7.3.1 Si Waveguide Core -- 7.3.2 Dynamic and Active Layers -- 7.3.3 SSCs and Overcladding -- 7.4 Propagation Performance of Waveguides -- 7.5 Integration of Si/Silica and Ge Photonic Devices -- 7.5.1 Integration of Si-Based Modulation Device and Ge-Based Photodetectors -- 7.5.2 Integration of Si/Silica-Based Wavelength Filter and Ge-Based Photodetectors -- 7.6 Summary -- References -- Chapter 8 Detectors -- 8.1 Introduction -- 8.2 Historical Background -- 8.3 Fiber-Optics Revolution -- 8.4 Avalanche Devices -- 8.5 Si-Photonics -- 8.6 High-Performance Ge Detectors -- 8.7 Process Options and Challenges -- 8.7.1 Physical Vapor Deposition (PVD) -- 8.7.2 Chemical Vapor Deposition -- 8.7.3 Rapid Melt Growth -- 8.7.4 Other Techniques -- 8.8 Device Architectures -- 8.9 Ge on Si Detectors in Highly Integrated Systems.
8.10 Reliability -- 8.11 Conclusions -- References -- Chapter 9 Ge and GeSi Electroabsorption Modulators -- 9.1 Introduction -- 9.2 EAE in Ge and GeSi: Theoretical and Experimental -- 9.2.1 Franz-Keldysh Effect -- 9.2.2 Quantum-Confined Stark Effect -- 9.2.3 Comparison of Ge FKE with QCSE Modulators -- 9.3 Waveguide Coupling -- 9.4 Current Progress in Ge and GeSi EAMs -- 9.5 Conclusions -- References -- Chapter 10 Strained Ge for Si-Based Integrated Photonics -- 10.1 Introduction -- 10.2 Bandgap and Strain: Theory -- 10.3 Bandgap and Strain: Experiment -- 10.3.1 Si -- 10.3.2 Ge on Si -- 10.3.3 GaAs on Ge on Si -- 10.4 Strain-Engineered Tunability of Lasers -- 10.5 Conclusions -- Acknowledgment -- References -- Chapter 11 Ge Quantum Dots-Based Light Emitting Devices -- 11.1 Introduction -- 11.2 Formation of Ge Dots on Si Substrates and Their Luminescent Properties -- 11.3 Enhanced Light Emission from Ge QDs Embedded in Optical Cavities -- 11.4 Optically Excited Light Emission from Ge QDs -- 11.4.1 Photonic Crystal Cavity -- 11.4.1.1 General Device Description -- 11.4.1.2 PL from PhC Microcavities -- 11.4.1.3 PL from L3-Type PhC Nanocavities -- 11.4.1.4 PL from Double-Heterostructure PhC Nanocavities -- 11.4.2 Microdisk/Ring -- 11.4.2.1 General Device Description -- 11.4.2.2 PL from Microdisks and Rings -- 11.5 Electrically Excited Light Emission from Ge ODs -- 11.5.1 Photonic Crystal Cavity -- 11.5.1.1 Vertical PIN Structure -- 11.5.1.2 Lateral PIN Structure -- 11.5.1.3 Optimized Lateral PIN Structure -- 11.5.2 Microdisk -- 11.6 Conclusion -- References -- Chapter 12 Ge-on-Si Lasers -- 12.1 Introduction -- 12.2 Modeling and Analyses of Band-Engineered Ge Optical Gain Media -- 12.2.1 Optical Gain from the Direct Gap Transition of Ge -- 12.2.1.1 Unstrained Ge -- 12.2.1.2 Tensile Strained Ge.
12.2.2 Band-Engineering by Combining Tensile Strain with N-type Doping -- 12.2.3 FCA Losses -- 12.2.4 Band Gap Narrowing in n+ Ge -- 12.2.5 Net Optical Gain Analyses for Tensile-Strained N+ Ge -- 12.2.6 Cocktail Band-Engineering Approach Involving Sn Alloying -- 12.2.7 Toward High Performance Ge QW Structures -- 12.3 Fabrication of Band-Engineered Ge-on-Si -- 12.3.1 Tensile Strained Ge-on-Si -- 12.3.2 N-Type Doping -- 12.3.2.1 Regular In situ Doping -- 12.3.2.2 Delta Doping Followed by Thermally Activated Drive-in Diffusion -- 12.3.2.3 Diffusion Doping from SOD Sources -- 12.3.3 Sn Alloying -- 12.4 Band-Engineered Ge-on-Si Light Emitters -- 12.4.1 Spontaneous Emission -- 12.4.1.1 Features of Direct Gap Emission from Ge -- 12.4.1.2 Spontaneous Emission from Ge and GeSn Microcavities -- 12.4.2 Optical Gain -- 12.4.3 Optically-Pumped Ge-on-Si Lasers -- 12.4.4 Electrically-Pumped Ge-on-Si Lasers -- 12.5 Conclusions -- Acknowledgments -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Chapter 1 Defects in Germanium -- 1.1 Introduction -- 1.2 Methods for Studying Defects and Impurities -- 1.2.1 Experimental Techniques -- 1.2.2 First-Principles Calculations -- 1.3 Impurities -- 1.3.1 Shallow Dopants -- 1.3.2 Hydrogen -- 1.4 Intrinsic Defects -- 1.4.1 Vacancies -- 1.4.1.1 Electronic Structure -- 1.4.1.2 Formation Energy -- 1.4.1.3 Defect Levels -- 1.4.1.4 Comparison with Silicon -- 1.4.1.5 Diffusion -- 1.4.2 Self-Interstitials -- 1.4.3 Dangling Bonds -- 1.4.3.1 Electronic Levels -- 1.4.4 Impact on Devices -- 1.5 Summary -- References -- Chapter 2 Hydrogen in Ge -- 2.1 Introduction -- 2.2 Properties of Hydrogen in Ge -- 2.2.1 Incorporation of Hydrogen -- 2.2.2 Isolated Hydrogen -- 2.2.3 Hydrogen Dimers -- 2.2.3.1 Interstitial H2 -- 2.2.3.2 The H2* Defect -- 2.2.3.3 H2 Molecules in Hydrogen-Induced Platelets -- 2.2.3.4 Complexes of Hydrogen with Other Defects -- 2.3 Hydrogen Passivation of Shallow Donors and Acceptors in Ge -- 2.3.1 Donor Passivation -- 2.3.2 Hydrogen in p-type Ge -- 2.3.3 Schottky Contacts on p-type Ge -- 2.4 Summary -- Acknowledgments -- References -- Chapter 3 Epitaxy of Ge Layers on Blanket and Patterned Si(001) for Nanoelectronics and Optoelectronics -- 3.1 General Introduction -- 3.2 Epitaxial Growth of Ge Thick Layers on Si(001) -- 3.2.1 Growth Protocol and Kinetics -- 3.2.2 Surface Morphology -- 3.2.3 Strain State -- 3.2.4 Defects Density and Distribution in the Ge Layers -- 3.3 Ge Surface Passivation with Si -- 3.3.1 Passivation Protocol -- 3.3.2 Surface and Film Morphology -- 3.4 SEG of Ge in Cavities at the End of Optical Waveguides -- 3.5 Fabrication, Structural, and Electrical Properties of Compressively Strained Ge-on-Insulator Substrates -- 3.5.1 The c-Ge on Si0.15Ge0.85 Process Flow.

3.5.2 Structural Properties of the c-Ge on Si0.15Ge0.85 Stacks as a Function of the Ge Layer Thickness -- 3.5.2.1 Surface Morphology -- 3.5.2.2 Macroscopic Strain State -- 3.5.2.3 Defect Density -- 3.5.3 Properties of the c-GeOI Substrates -- 3.5.3.1 Structural Properties -- 3.5.3.2 Electrical Properties -- 3.5.3.3 Benchmark -- 3.6 Conclusion and Perspectives -- References -- Chapter 4 Heavy Doping in Si1-xGex Epitaxial Growth by Chemical Vapor Deposition -- 4.1 Introduction -- 4.2 In situ Doping of B, P, and C in Si1-x Gex Epitaxial Growth -- 4.2.1 In situ Doping Characteristics in Si1-xGex Epitaxial Growth -- 4.2.2 Relationship between Carrier and Impurity (B or P) Concentrations in Si1-x-yGexCy Epitaxial Film -- 4.3 Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.1 Boron Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.1.1 Surface Reaction of B2H6 on Si1-xGex(100) -- 4.3.1.2 Si1-xGex Epitaxial Growth over B Atomic Layer Already Formed on the (100) Surface -- 4.3.2 Phosphorus Atomic-Layer Doping in Si1-xGex Epitaxial Growth -- 4.3.2.1 Surface Reaction of PH3 on Si1-xGex(100) -- 4.3.2.2 Si1-xGex Epitaxial Growth over P Atomic Layer Already-Formed on the (100) Surface -- 4.3.3 Carbon Atomic-Layer Doping in Si/Si1-xGex/Si(100) Structure -- 4.3.3.1 Surface Reaction of SiH3CH3 on Si1-xGex(100) -- 4.3.3.2 Si1-xGex Epitaxial Growth over C Atomic Layer Already Formed on the (100) Surface -- 4.4 Conclusion and Future Trends -- Acknowledgments -- References -- Chapter 5 FEOL Integration of Silicon- and Germanium-Based Photonics in Bulk-Silicon, High-Performance SiGe: C-BiCMOS Processes -- 5.1 Introduction -- 5.2 Local SOI Technology -- 5.3 Passive Silicon Waveguide Technology -- 5.4 Modulator Technology -- 5.5 Photonics Integration in BiCMOS Flow -- 5.6 Germanium Photo Detector - Process Integration Challenges.

5.7 Example Circuit - 10 Gbit s-1 Modulator with Driver -- 5.8 Outlook -- Acknowledgments -- References -- Chapter 6 Ge Condensation and Its Device Application -- 6.1 Principle of Ge Condensation and Fabrication Process -- 6.1.1 Basic Concept of Ge Condensation Process -- 6.1.2 Critical Process Parameters -- 6.2 GOI Film Characterization -- 6.2.1 Thickness Control -- 6.2.2 Residual Impurity -- 6.2.3 Strain Behavior -- 6.2.4 Defects and Dislocations -- 6.2.5 Electrical Properties -- 6.3 Device Application -- 6.3.1 Planar GOI MOSFET -- 6.3.2 MOSFETs Using Local Ge Condensation -- 6.3.2.1 Planar MOSFETs -- 6.3.2.2 Multi-gate and Nanowire MOSFETs -- 6.3.3 Stressor -- 6.3.4 Photonic Devices -- 6.4 Summary -- References -- Chapter 7 Waveguide Design, Fabrication, and Active Device Integration -- 7.1 Introduction -- 7.2 Design of Silicon Photonic Wire Waveguiding System -- 7.2.1 Guided Modes of Si Photonic Wire Waveguide -- 7.2.2 External Coupling of Silicon Photonic Wire Waveguide -- 7.2.3 Coupling to Ge Photonic Devices -- 7.3 Fabrication -- 7.3.1 Si Waveguide Core -- 7.3.2 Dynamic and Active Layers -- 7.3.3 SSCs and Overcladding -- 7.4 Propagation Performance of Waveguides -- 7.5 Integration of Si/Silica and Ge Photonic Devices -- 7.5.1 Integration of Si-Based Modulation Device and Ge-Based Photodetectors -- 7.5.2 Integration of Si/Silica-Based Wavelength Filter and Ge-Based Photodetectors -- 7.6 Summary -- References -- Chapter 8 Detectors -- 8.1 Introduction -- 8.2 Historical Background -- 8.3 Fiber-Optics Revolution -- 8.4 Avalanche Devices -- 8.5 Si-Photonics -- 8.6 High-Performance Ge Detectors -- 8.7 Process Options and Challenges -- 8.7.1 Physical Vapor Deposition (PVD) -- 8.7.2 Chemical Vapor Deposition -- 8.7.3 Rapid Melt Growth -- 8.7.4 Other Techniques -- 8.8 Device Architectures -- 8.9 Ge on Si Detectors in Highly Integrated Systems.

8.10 Reliability -- 8.11 Conclusions -- References -- Chapter 9 Ge and GeSi Electroabsorption Modulators -- 9.1 Introduction -- 9.2 EAE in Ge and GeSi: Theoretical and Experimental -- 9.2.1 Franz-Keldysh Effect -- 9.2.2 Quantum-Confined Stark Effect -- 9.2.3 Comparison of Ge FKE with QCSE Modulators -- 9.3 Waveguide Coupling -- 9.4 Current Progress in Ge and GeSi EAMs -- 9.5 Conclusions -- References -- Chapter 10 Strained Ge for Si-Based Integrated Photonics -- 10.1 Introduction -- 10.2 Bandgap and Strain: Theory -- 10.3 Bandgap and Strain: Experiment -- 10.3.1 Si -- 10.3.2 Ge on Si -- 10.3.3 GaAs on Ge on Si -- 10.4 Strain-Engineered Tunability of Lasers -- 10.5 Conclusions -- Acknowledgment -- References -- Chapter 11 Ge Quantum Dots-Based Light Emitting Devices -- 11.1 Introduction -- 11.2 Formation of Ge Dots on Si Substrates and Their Luminescent Properties -- 11.3 Enhanced Light Emission from Ge QDs Embedded in Optical Cavities -- 11.4 Optically Excited Light Emission from Ge QDs -- 11.4.1 Photonic Crystal Cavity -- 11.4.1.1 General Device Description -- 11.4.1.2 PL from PhC Microcavities -- 11.4.1.3 PL from L3-Type PhC Nanocavities -- 11.4.1.4 PL from Double-Heterostructure PhC Nanocavities -- 11.4.2 Microdisk/Ring -- 11.4.2.1 General Device Description -- 11.4.2.2 PL from Microdisks and Rings -- 11.5 Electrically Excited Light Emission from Ge ODs -- 11.5.1 Photonic Crystal Cavity -- 11.5.1.1 Vertical PIN Structure -- 11.5.1.2 Lateral PIN Structure -- 11.5.1.3 Optimized Lateral PIN Structure -- 11.5.2 Microdisk -- 11.6 Conclusion -- References -- Chapter 12 Ge-on-Si Lasers -- 12.1 Introduction -- 12.2 Modeling and Analyses of Band-Engineered Ge Optical Gain Media -- 12.2.1 Optical Gain from the Direct Gap Transition of Ge -- 12.2.1.1 Unstrained Ge -- 12.2.1.2 Tensile Strained Ge.

12.2.2 Band-Engineering by Combining Tensile Strain with N-type Doping -- 12.2.3 FCA Losses -- 12.2.4 Band Gap Narrowing in n+ Ge -- 12.2.5 Net Optical Gain Analyses for Tensile-Strained N+ Ge -- 12.2.6 Cocktail Band-Engineering Approach Involving Sn Alloying -- 12.2.7 Toward High Performance Ge QW Structures -- 12.3 Fabrication of Band-Engineered Ge-on-Si -- 12.3.1 Tensile Strained Ge-on-Si -- 12.3.2 N-Type Doping -- 12.3.2.1 Regular In situ Doping -- 12.3.2.2 Delta Doping Followed by Thermally Activated Drive-in Diffusion -- 12.3.2.3 Diffusion Doping from SOD Sources -- 12.3.3 Sn Alloying -- 12.4 Band-Engineered Ge-on-Si Light Emitters -- 12.4.1 Spontaneous Emission -- 12.4.1.1 Features of Direct Gap Emission from Ge -- 12.4.1.2 Spontaneous Emission from Ge and GeSn Microcavities -- 12.4.2 Optical Gain -- 12.4.3 Optically-Pumped Ge-on-Si Lasers -- 12.4.4 Electrically-Pumped Ge-on-Si Lasers -- 12.5 Conclusions -- Acknowledgments -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.