ORPP logo
Image from Google Jackets

LED Lighting : Technology and Perception.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (517 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527670178
Subject(s): Genre/Form: Additional physical formats: Print version:: LED LightingDDC classification:
  • 621.381522
LOC classification:
  • TK7871.89.L53 -- L43 2015eb
Online resources:
Contents:
Intro -- LED Lighting -- Foreword -- Contents -- Table of the Coauthors -- Preface -- Chapter 1 Introduction -- Reference -- Chapter 2 The Human Visual System and Its Modeling for Lighting Engineering -- 2.1 Visual System Basics -- 2.1.1 The Way of Visual Information -- 2.1.2 Perception -- 2.1.3 Structure of the Human Eye -- 2.1.4 The Pupil -- 2.1.5 Accommodation -- 2.1.6 The Retina -- 2.1.7 Cone Mosaic and Spectral Sensitivities -- 2.1.8 Receptive Fields and Spatial Vision -- 2.2 Radiometry and Photometry -- 2.2.1 Radiant Power (Radiant Flux) and Luminous Flux -- 2.2.2 Irradiance and Illuminance -- 2.2.3 Radiant Intensity and Luminous Intensity -- 2.2.4 Radiance and Luminance -- 2.2.5 Degrees of Efficiency for Electric Light Sources -- 2.3 Colorimetry and Color Science -- 2.3.1 Color Matching Functions and Tristimulus Values -- 2.3.2 Color Appearance, Chromatic Adaptation, Color Spaces, and Color Appearance Models -- 2.3.2.1 Perceived Attributes of Color Perception -- 2.3.2.2 Chromatic Adaptation -- 2.3.2.3 CIELAB Color Space -- 2.3.2.4 The CIECAM02 Color Appearance Model -- 2.3.3 Modeling of Color Difference Perception -- 2.3.3.1 MacAdam Ellipses -- 2.3.3.2 u', v' Chromaticity Diagram -- 2.3.3.3 CIELAB Color Difference -- 2.3.3.4 CAM02-UCS Uniform Color Space and Color Difference -- 2.3.4 Blackbody Radiators and Phases of Daylight in the x, y Chromaticity Diagram -- 2.4 LED Specific Spectral and Colorimetric Quantities -- 2.4.1 Peak Wavelength (λP) -- 2.4.2 Spectral Bandwidth at Half Intensity Level (Δλ0.5) -- 2.4.3 Centroid Wavelength (λC) -- 2.4.4 Colorimetric Quantities Derived from the Spectral Radiance Distribution of the LED Light Source -- 2.4.4.1 Dominant Wavelength (λD) -- 2.4.4.2 Colorimetric Purity (pC) -- 2.5 Circadian Effect of Electromagnetic Radiation -- 2.5.1 The Human Circadian Clock -- References.
Chapter 3 LED Components - Principles of Radiation Generation and Packaging -- 3.1 Introduction to LED Technology -- 3.2 Basic Knowledge on Color Semiconductor LEDs -- 3.2.1 Injection Luminescence -- 3.2.2 Homo-Junction, Hetero-Junction, and Quantum Well -- 3.2.2.1 Homo-Junction -- 3.2.2.2 Hetero-Junction -- 3.2.2.3 Quantum Well -- 3.2.3 Recombination -- 3.2.3.1 Direct and Indirect Recombination -- 3.2.3.2 Radiative and Nonradiative Recombinations and Their Simple Theoretical Quantification -- 3.2.4 Efficiency -- 3.2.4.1 Internal Quantum Efficiency (ηi) -- 3.2.4.2 Injection Efficiency (ηinj) -- 3.2.4.3 Light Extraction Efficiency (ηextraction) -- 3.2.4.4 External Quantum Efficiency (ηext) -- 3.2.4.5 Radiant Efficiency (ηe, See Section 2.2.5, Eq. (2.13)) -- 3.2.4.6 Luminous Efficacy (ηv) -- 3.2.5 Semiconductor Material Systems - Efficiency, Possibilities, and Limits -- 3.2.5.1 Possible Semiconductor Systems -- 3.2.5.2 Semiconductor Systems for Amber-Red Semiconductor LEDs -- 3.2.5.3 Semiconductor Systems for UV-Blue-Green Semiconductor LEDs -- 3.2.5.4 The Green Efficiency Gap of Color Semiconductor LEDs -- 3.3 Color Semiconductor LEDs -- 3.3.1 Concepts of Matter Waves of de Broglie -- 3.3.2 The Physical Mechanism of Photon Emission -- 3.3.3 Theoretical Absolute Spectral Power Distribution of a Color Semiconductor LED -- 3.3.4 Characteristic Parameters of the LEDs Absolute Spectral Power Distribution -- 3.3.5 Role of the Input Forward Current -- 3.3.6 Summary -- 3.4 Phosphor Systems and White Phosphor-Converted LEDs -- 3.4.1 Introduction to Phosphors -- 3.4.2 Luminescence Mechanisms -- 3.4.3 Aluminum Garnets -- 3.4.4 Alkaline Earth Sulfides -- 3.4.5 Alkaline Earth Ortho-Silicates -- 3.4.6 Alkaline Earth Oxy-Ortho-Silicates -- 3.4.7 Nitride Phosphors -- 3.4.7.1 CASN -- 3.4.7.2 2-5-8-Nitrides -- 3.4.7.3 1-2-2-2 Oxynitrides -- 3.4.7.4 β-SiAlON.
3.4.8 Phosphor-Coating Methods -- 3.4.9 Challenges of Volumetric Dispensing Methods -- 3.4.10 Influence of Phosphor Concentration and Thickness on LED Spectra -- 3.5 Green and Red Phosphor-Converted LEDs -- 3.5.1 The Phosphor-Converted System -- 3.5.2 Chromaticity Considerations -- 3.5.3 Phosphor Mixtures for the White Phosphor-Converted LEDs -- 3.5.4 Colorimetric Characteristics of the Phosphor-Converted LEDs -- 3.6 Optimization of LED Chip-Packaging Technology -- 3.6.1 Efficiency Improvement for the LED Chip -- 3.6.2 Molding and Positioning of the Phosphor System -- 3.6.3 Substrate Technology - Integration Degree -- References -- Chapter 4 Measurement and Modeling of the LED Light Source -- 4.1 LED Radiometry, Photometry, and Colorimetry -- 4.1.1 Spatially Resolved Luminance and Color Measurement of LED Components -- 4.1.2 Integrating Sphere Based Spectral Radiant Flux and Luminous Flux Measurement -- 4.2 Thermal and Electric Behavior of Color Semiconductor LEDs -- 4.2.1 Temperature and Current Dependence of Color Semiconductor LED Spectra -- 4.2.1.1 Temperature Dependence of Color Semiconductor LED Spectra -- 4.2.1.2 Current Dependence of Color Semiconductor LED Spectra -- 4.2.2 Temperature and Current Dependence of Radiant Flux and Radiant Efficiency of Color Semiconductor LEDs -- 4.2.2.1 Temperature Dependence of Radiant Flux and Radiant Efficiency of Color Semiconductor LEDs -- 4.2.2.2 Current Dependence of Radiant Flux and Radiant Efficiency of Color Semiconductor LEDs -- 4.2.2.3 Conclusion -- 4.2.3 Temperature and Current Dependence of the Chromaticity Difference of Color Semiconductor LEDs -- 4.2.3.1 Temperature Dependence of the Chromaticity Difference of the Color Semiconductor LEDs -- 4.2.3.2 Current Dependence of Chromaticity Difference of the Color Semiconductor LEDs -- 4.3 Thermal and Electric Behavior of White Phosphor-Converted LEDs.
4.3.1 Temperature and Current Dependence of Warm White PC-LED Spectra -- 4.3.1.1 Temperature Dependence of Warm White PC-LED Spectra -- 4.3.1.2 Current Dependence of Warm White PC-LED Spectra -- 4.3.2 Current Limits for the Color Rendering Index, Luminous Efficacy, and White Point for Warm White PC-LEDs -- 4.3.2.1 General Considerations -- 4.3.2.2 Comparison of Color Rendering Index and Luminous Efficacy -- 4.3.2.3 White Point of the Warm White PC-LEDs -- 4.3.3 Temperature and Current Dependence of the Luminous Flux and Luminous Efficacy of Warm White PC-LEDs -- 4.3.3.1 Temperature Dependence of the Luminous Flux and Luminous Efficacy of Warm White PC-LEDs -- 4.3.3.2 Current Dependence of Luminous Flux and Luminous Efficacy of Warm White PC-LEDs -- 4.3.4 Temperature and Current Dependence of the Chromaticity Difference of Warm White PC-LEDs -- 4.3.4.1 Temperature Dependence of the Chromaticity Difference of Warm White PC-LEDs -- 4.3.4.2 Current Dependence of the Chromaticity Difference of Warm White PC-LEDs -- 4.4 Consequences for LED Selection Under Real Operation Conditions -- 4.4.1 Chromaticity Differences Between the Operating Point and the Cold Binning Point -- 4.4.2 Chromaticity Difference Between the Operating Point and the Hot Binning Point -- 4.5 LED Electrical Model -- 4.5.1 Theoretical Approach for an Ideal Diode -- 4.5.2 A LED Experimental Electrical Model Based on the Circuit Technology -- 4.5.3 An Example for a Limited Electrical Model for LEDs -- 4.5.3.1 Limited Operating Range -- 4.5.3.2 Mathematical Description of the LEDs Forward Current in the Limited Operating Range -- 4.5.3.3 An Example for the Application of the Limited Electrical Model -- 4.5.3.4 Evaluation and Improvement of the Electrical Model -- 4.6 LED Spectral Model -- 4.6.1 Spectral Models of Color Semiconductor LEDs and White PC-LEDs -- 4.6.1.1 Mathematical Approach.
4.6.2 An Example for a Color Semiconductor LED Spectral Model -- 4.6.2.1 Experiments on Spectral Models for Color Semiconductor LEDs -- 4.6.3 An Example for a PC-LED Spectral Model -- 4.6.3.1 Experiments for the Spectral Models of White PC-LEDs -- 4.7 Thermal Relationships and Thermal LED Models -- 4.7.1 Thermal Relationships in LEDs -- 4.7.1.1 Thermal Structure of a Typical LED -- 4.7.1.2 A Typical Equivalent Thermal Circuit -- 4.7.1.3 External Thermal Resistance -- 4.7.2 One-Dimensional Thermal Models -- 4.7.2.1 The First Order Thermal Circuit -- 4.7.2.2 Second Order Thermal Circuit -- 4.7.2.3 The nth Order Thermal Circuit -- 4.7.2.4 The Transient Function and Its Weighting Function -- 4.7.2.5 Conclusions -- 4.8 Measurement Methods to Determine the Thermal Characteristics of LED Devices -- 4.8.1 Measurement Methods and Procedures -- 4.8.1.1 Selection of an Available Measurement Method -- 4.8.1.2 Description of the Cooling Measurement Procedure -- 4.8.2 Description of a Typical Measurement System and Its Calibration -- 4.8.2.1 Components and Structure of the Measurement System -- 4.8.2.2 Determination of Thermal Power and Calibration Factor for Several LEDs -- 4.8.3 Methods of Thermal Map Decoding -- 4.8.3.1 Decoding of the Thermal Map by the Method of the Structure Function -- 4.8.3.2 Thermal Map Decoding by the Euclidean Algorithm -- 4.9 Thermal and Optical Behavior of Blue LEDs, Silicon Systems, and Phosphor Systems -- 4.9.1 Selection of LEDs and Their Optical Behavior -- 4.9.2 Efficiency of the LEDs -- 4.9.3 Results of Thermal Decoding by the Structure Function Method -- 4.9.4 Results of Thermal Decoding by the Method of the Euclidean Algorithm -- 4.10 Aging Behavior of High-Power LED Components -- 4.10.1 Degradation and Failure Mechanisms of LED Components -- 4.10.2 Research on the Aging Behavior of High-Power-LEDs.
4.10.2.1 Change of Spectral Distribution and Chromaticity Coordinates.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- LED Lighting -- Foreword -- Contents -- Table of the Coauthors -- Preface -- Chapter 1 Introduction -- Reference -- Chapter 2 The Human Visual System and Its Modeling for Lighting Engineering -- 2.1 Visual System Basics -- 2.1.1 The Way of Visual Information -- 2.1.2 Perception -- 2.1.3 Structure of the Human Eye -- 2.1.4 The Pupil -- 2.1.5 Accommodation -- 2.1.6 The Retina -- 2.1.7 Cone Mosaic and Spectral Sensitivities -- 2.1.8 Receptive Fields and Spatial Vision -- 2.2 Radiometry and Photometry -- 2.2.1 Radiant Power (Radiant Flux) and Luminous Flux -- 2.2.2 Irradiance and Illuminance -- 2.2.3 Radiant Intensity and Luminous Intensity -- 2.2.4 Radiance and Luminance -- 2.2.5 Degrees of Efficiency for Electric Light Sources -- 2.3 Colorimetry and Color Science -- 2.3.1 Color Matching Functions and Tristimulus Values -- 2.3.2 Color Appearance, Chromatic Adaptation, Color Spaces, and Color Appearance Models -- 2.3.2.1 Perceived Attributes of Color Perception -- 2.3.2.2 Chromatic Adaptation -- 2.3.2.3 CIELAB Color Space -- 2.3.2.4 The CIECAM02 Color Appearance Model -- 2.3.3 Modeling of Color Difference Perception -- 2.3.3.1 MacAdam Ellipses -- 2.3.3.2 u', v' Chromaticity Diagram -- 2.3.3.3 CIELAB Color Difference -- 2.3.3.4 CAM02-UCS Uniform Color Space and Color Difference -- 2.3.4 Blackbody Radiators and Phases of Daylight in the x, y Chromaticity Diagram -- 2.4 LED Specific Spectral and Colorimetric Quantities -- 2.4.1 Peak Wavelength (λP) -- 2.4.2 Spectral Bandwidth at Half Intensity Level (Δλ0.5) -- 2.4.3 Centroid Wavelength (λC) -- 2.4.4 Colorimetric Quantities Derived from the Spectral Radiance Distribution of the LED Light Source -- 2.4.4.1 Dominant Wavelength (λD) -- 2.4.4.2 Colorimetric Purity (pC) -- 2.5 Circadian Effect of Electromagnetic Radiation -- 2.5.1 The Human Circadian Clock -- References.

Chapter 3 LED Components - Principles of Radiation Generation and Packaging -- 3.1 Introduction to LED Technology -- 3.2 Basic Knowledge on Color Semiconductor LEDs -- 3.2.1 Injection Luminescence -- 3.2.2 Homo-Junction, Hetero-Junction, and Quantum Well -- 3.2.2.1 Homo-Junction -- 3.2.2.2 Hetero-Junction -- 3.2.2.3 Quantum Well -- 3.2.3 Recombination -- 3.2.3.1 Direct and Indirect Recombination -- 3.2.3.2 Radiative and Nonradiative Recombinations and Their Simple Theoretical Quantification -- 3.2.4 Efficiency -- 3.2.4.1 Internal Quantum Efficiency (ηi) -- 3.2.4.2 Injection Efficiency (ηinj) -- 3.2.4.3 Light Extraction Efficiency (ηextraction) -- 3.2.4.4 External Quantum Efficiency (ηext) -- 3.2.4.5 Radiant Efficiency (ηe, See Section 2.2.5, Eq. (2.13)) -- 3.2.4.6 Luminous Efficacy (ηv) -- 3.2.5 Semiconductor Material Systems - Efficiency, Possibilities, and Limits -- 3.2.5.1 Possible Semiconductor Systems -- 3.2.5.2 Semiconductor Systems for Amber-Red Semiconductor LEDs -- 3.2.5.3 Semiconductor Systems for UV-Blue-Green Semiconductor LEDs -- 3.2.5.4 The Green Efficiency Gap of Color Semiconductor LEDs -- 3.3 Color Semiconductor LEDs -- 3.3.1 Concepts of Matter Waves of de Broglie -- 3.3.2 The Physical Mechanism of Photon Emission -- 3.3.3 Theoretical Absolute Spectral Power Distribution of a Color Semiconductor LED -- 3.3.4 Characteristic Parameters of the LEDs Absolute Spectral Power Distribution -- 3.3.5 Role of the Input Forward Current -- 3.3.6 Summary -- 3.4 Phosphor Systems and White Phosphor-Converted LEDs -- 3.4.1 Introduction to Phosphors -- 3.4.2 Luminescence Mechanisms -- 3.4.3 Aluminum Garnets -- 3.4.4 Alkaline Earth Sulfides -- 3.4.5 Alkaline Earth Ortho-Silicates -- 3.4.6 Alkaline Earth Oxy-Ortho-Silicates -- 3.4.7 Nitride Phosphors -- 3.4.7.1 CASN -- 3.4.7.2 2-5-8-Nitrides -- 3.4.7.3 1-2-2-2 Oxynitrides -- 3.4.7.4 β-SiAlON.

3.4.8 Phosphor-Coating Methods -- 3.4.9 Challenges of Volumetric Dispensing Methods -- 3.4.10 Influence of Phosphor Concentration and Thickness on LED Spectra -- 3.5 Green and Red Phosphor-Converted LEDs -- 3.5.1 The Phosphor-Converted System -- 3.5.2 Chromaticity Considerations -- 3.5.3 Phosphor Mixtures for the White Phosphor-Converted LEDs -- 3.5.4 Colorimetric Characteristics of the Phosphor-Converted LEDs -- 3.6 Optimization of LED Chip-Packaging Technology -- 3.6.1 Efficiency Improvement for the LED Chip -- 3.6.2 Molding and Positioning of the Phosphor System -- 3.6.3 Substrate Technology - Integration Degree -- References -- Chapter 4 Measurement and Modeling of the LED Light Source -- 4.1 LED Radiometry, Photometry, and Colorimetry -- 4.1.1 Spatially Resolved Luminance and Color Measurement of LED Components -- 4.1.2 Integrating Sphere Based Spectral Radiant Flux and Luminous Flux Measurement -- 4.2 Thermal and Electric Behavior of Color Semiconductor LEDs -- 4.2.1 Temperature and Current Dependence of Color Semiconductor LED Spectra -- 4.2.1.1 Temperature Dependence of Color Semiconductor LED Spectra -- 4.2.1.2 Current Dependence of Color Semiconductor LED Spectra -- 4.2.2 Temperature and Current Dependence of Radiant Flux and Radiant Efficiency of Color Semiconductor LEDs -- 4.2.2.1 Temperature Dependence of Radiant Flux and Radiant Efficiency of Color Semiconductor LEDs -- 4.2.2.2 Current Dependence of Radiant Flux and Radiant Efficiency of Color Semiconductor LEDs -- 4.2.2.3 Conclusion -- 4.2.3 Temperature and Current Dependence of the Chromaticity Difference of Color Semiconductor LEDs -- 4.2.3.1 Temperature Dependence of the Chromaticity Difference of the Color Semiconductor LEDs -- 4.2.3.2 Current Dependence of Chromaticity Difference of the Color Semiconductor LEDs -- 4.3 Thermal and Electric Behavior of White Phosphor-Converted LEDs.

4.3.1 Temperature and Current Dependence of Warm White PC-LED Spectra -- 4.3.1.1 Temperature Dependence of Warm White PC-LED Spectra -- 4.3.1.2 Current Dependence of Warm White PC-LED Spectra -- 4.3.2 Current Limits for the Color Rendering Index, Luminous Efficacy, and White Point for Warm White PC-LEDs -- 4.3.2.1 General Considerations -- 4.3.2.2 Comparison of Color Rendering Index and Luminous Efficacy -- 4.3.2.3 White Point of the Warm White PC-LEDs -- 4.3.3 Temperature and Current Dependence of the Luminous Flux and Luminous Efficacy of Warm White PC-LEDs -- 4.3.3.1 Temperature Dependence of the Luminous Flux and Luminous Efficacy of Warm White PC-LEDs -- 4.3.3.2 Current Dependence of Luminous Flux and Luminous Efficacy of Warm White PC-LEDs -- 4.3.4 Temperature and Current Dependence of the Chromaticity Difference of Warm White PC-LEDs -- 4.3.4.1 Temperature Dependence of the Chromaticity Difference of Warm White PC-LEDs -- 4.3.4.2 Current Dependence of the Chromaticity Difference of Warm White PC-LEDs -- 4.4 Consequences for LED Selection Under Real Operation Conditions -- 4.4.1 Chromaticity Differences Between the Operating Point and the Cold Binning Point -- 4.4.2 Chromaticity Difference Between the Operating Point and the Hot Binning Point -- 4.5 LED Electrical Model -- 4.5.1 Theoretical Approach for an Ideal Diode -- 4.5.2 A LED Experimental Electrical Model Based on the Circuit Technology -- 4.5.3 An Example for a Limited Electrical Model for LEDs -- 4.5.3.1 Limited Operating Range -- 4.5.3.2 Mathematical Description of the LEDs Forward Current in the Limited Operating Range -- 4.5.3.3 An Example for the Application of the Limited Electrical Model -- 4.5.3.4 Evaluation and Improvement of the Electrical Model -- 4.6 LED Spectral Model -- 4.6.1 Spectral Models of Color Semiconductor LEDs and White PC-LEDs -- 4.6.1.1 Mathematical Approach.

4.6.2 An Example for a Color Semiconductor LED Spectral Model -- 4.6.2.1 Experiments on Spectral Models for Color Semiconductor LEDs -- 4.6.3 An Example for a PC-LED Spectral Model -- 4.6.3.1 Experiments for the Spectral Models of White PC-LEDs -- 4.7 Thermal Relationships and Thermal LED Models -- 4.7.1 Thermal Relationships in LEDs -- 4.7.1.1 Thermal Structure of a Typical LED -- 4.7.1.2 A Typical Equivalent Thermal Circuit -- 4.7.1.3 External Thermal Resistance -- 4.7.2 One-Dimensional Thermal Models -- 4.7.2.1 The First Order Thermal Circuit -- 4.7.2.2 Second Order Thermal Circuit -- 4.7.2.3 The nth Order Thermal Circuit -- 4.7.2.4 The Transient Function and Its Weighting Function -- 4.7.2.5 Conclusions -- 4.8 Measurement Methods to Determine the Thermal Characteristics of LED Devices -- 4.8.1 Measurement Methods and Procedures -- 4.8.1.1 Selection of an Available Measurement Method -- 4.8.1.2 Description of the Cooling Measurement Procedure -- 4.8.2 Description of a Typical Measurement System and Its Calibration -- 4.8.2.1 Components and Structure of the Measurement System -- 4.8.2.2 Determination of Thermal Power and Calibration Factor for Several LEDs -- 4.8.3 Methods of Thermal Map Decoding -- 4.8.3.1 Decoding of the Thermal Map by the Method of the Structure Function -- 4.8.3.2 Thermal Map Decoding by the Euclidean Algorithm -- 4.9 Thermal and Optical Behavior of Blue LEDs, Silicon Systems, and Phosphor Systems -- 4.9.1 Selection of LEDs and Their Optical Behavior -- 4.9.2 Efficiency of the LEDs -- 4.9.3 Results of Thermal Decoding by the Structure Function Method -- 4.9.4 Results of Thermal Decoding by the Method of the Euclidean Algorithm -- 4.10 Aging Behavior of High-Power LED Components -- 4.10.1 Degradation and Failure Mechanisms of LED Components -- 4.10.2 Research on the Aging Behavior of High-Power-LEDs.

4.10.2.1 Change of Spectral Distribution and Chromaticity Coordinates.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.