ORPP logo
Image from Google Jackets

Source Separation and Decentralization for Wastewater Management.

By: Contributor(s): Material type: TextTextPublisher: London : IWA Publishing, 2013Copyright date: ©2013Edition: 1st edDescription: 1 online resource (502 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781780401072
Subject(s): Genre/Form: Additional physical formats: Print version:: Source Separation and Decentralization for Wastewater ManagementDDC classification:
  • 628.3
LOC classification:
  • TC409.P75 2013eb
Online resources:
Contents:
Cover -- Copyright -- Contents -- Authors' List -- Preface -- Chapter 1: Editorial -- Part I: The advantages of source separation and decentralization -- Chapter 2: The energy issue in urban water management -- 2.1 Introduction - Think Globally and Act Locally -- 2.2 Global Energy Goal -- 2.3 Renewable Energy Sources -- 2.4 Photosynthesis, Biomass, and BOD -- 2.5 Microbial Energy Conversion -- 2.6 Nutrient Recovery -- 2.7 New Biomass from Photosynthetic Microorganisms -- 2.8 Lower Energy Use -- 2.9 The Impact of Source Separation and Decentralization -- References -- Chapter 3: Peak phosphorus and the role of P recovery in achieving food security -- 3.1 Introduction -- 3.2 Phosphorus and Global Food Security -- 3.3 Global Phosphorus Scarcity and Pollution -- 3.4 Five Dimensions of Phosphorus Scarcity -- 3.5 Phosphorus Use in the Global Food System -- 3.6 Achieving Phosphorus Security -- 3.6.1 An integrated approach is required -- 3.6.2 The role of decentralized sanitation systems -- 3.6.3 Key challenges and opportunities -- 3.7 Conclusions -- References -- Chapter 4: Nitrogen economy of the 21st Century -- 4.1 Introduction -- 4.2 Nitrogen Sources -- 4.3 Release of Nitrogen to the Environment -- 4.4 Environmental Consequences -- 4.5 The Future and Possible Interventions -- 4.6 Conclusions -- References -- Chapter 5: Urban water supply under expanding water scarcity -- 5.1 Introduction -- 5.2 Water Supply of Urban Areas -- 5.2.1 On the verge of a new water scarcity -- 5.3 Implications of Increasing Competition? -- 5.4 Adapting to Increasing Water Shortage -- 5.5 Reasonable Blue-Water Allocation -- 5.6 Irrigation Potential -- 5.7 Additive Versus Competing Water Uses -- 5.8 Conclusion -- Acknowledgement -- References -- Chapter 6: The issue of micropollutants in urban water management -- 6.1 Introduction.
6.2 Parent Compounds, Metabolites and Transformation Products -- 6.3 Classification -- 6.4 Some Examples of Micropollutants -- 6.4.1 Flame retardants -- 6.4.2 Biocides and pesticides -- 6.4.3 Endocrine disrupting chemicals -- 6.4.4 Anti-corrosive additives -- 6.4.5 Personal care products -- 6.4.6 Perfluorinated surfactants - PFOS and PFOA -- 6.4.7 Pharmaceuticals -- 6.4.8 Artificial sweeteners -- 6.4.9 Engineered nanoparticles -- 6.5 Management Options -- 6.5.1 Technology -- 6.5.2 Education and training -- 6.5.3 Source separation -- 6.5.4 Benign by design -- References -- Chapter 7: Full costs, (dis-)economies of scale and the price of uncertainty -- 7.1 Introduction -- 7.2 Conveyance-Based Wastewater Treatment -- 7.3 (dis-)Economies of Scale -- 7.4 Deficits of the Net Present Value Method -- 7.5 The Cost of Uncertainty -- 7.6 On-Site Treatment Systems -- 7.7 Conclusions -- References -- Chapter 8: The rationale for decentralization of wastewater infrastructure -- 8.1 Types of Wastewater Infrastructure -- 8.2 Centralized Treatment Systems -- 8.3 Distributed Centralized Systems -- 8.4 Centralized Systems with Satellites -- 8.4.1 Implementation of satellite systems -- 8.5 Decentralized Systems -- 8.5.1 Types of decentralized wastewater systems -- 8.5.2 Historical development of decentralized systems -- 8.5.3 Modern development of decentralized systems -- 8.5.4 Advantages and disadvantages of decentralization -- 8.5.5 Continued developments in decentralized systems -- 8.5.6 Future evolution of decentralized wastewater systems -- 8.6 The Future -- 8.7 Summary -- References -- Chapter 9: Cities of the global South - is decentralized sanitation a solution? -- 9.1 Introduction -- 9.2 Centralized Systems -- 9.3 Unbundling -- 9.3.1 The value chain -- 9.3.2 Vertical unbundling -- 9.3.3 Horizontal unbundling -- 9.4 Decentralization -- 9.5 Technologies.
9.6 Creating Incentives -- 9.6.1 Contractual incentives -- 9.6.2 Financial incentives -- 9.6.3 Political incentives -- 9.6.4 Professional incentives -- 9.7 Summary -- References -- Part II: The challenges of source separation and decentralization -- Chapter 10: Implementation of source separation and decentralization in cities -- 10.1 Introduction -- 10.2 The Main Advantages of Source Separation and Decentralization in Cities -- 10.3 Challenges of Source Separation and Decentralization in Cities -- 10.3.1 The challenge of transport -- 10.3.2 The challenge of developing treatment processes -- 10.4 Transition -- 10.5 Conclusions -- References -- Chapter 11: Hygiene, a major challenge for source separation and decentralization -- 11.1 Introduction -- 11.2 Hazard Identification in a System Perspective -- 11.3 Human Exposure Assessment -- 11.4 Treatment Barriers and Examples of Their Reduction Efficiency -- 11.5 Quantifications of Risks and Risk-Benefit Strategies -- 11.6 Future Challenges and Knowledge Gaps -- References -- Chapter 12: Closing the loop: Recycling nutrients to agriculture -- 12.1 Nutrient Balance Close to Crop Removal -- 12.2 Source-Separated Toilet Wastes are Unique Biological Fertilizers -- 12.3 Nutrient Requirements and Fertilizers Used in Practice -- 12.4 Economic and GWP Value of Nutrients -- 12.5 Urine is Very Low in Pollutants -- 12.6 Low Hygiene Risk -- 12.7 Spreading Machinery -- 12.8 The Farmer - Businessman, Soil Steward and Entrepreneur -- References -- Chapter 13: The potential of control and monitoring -- 13.1 Introduction -- 13.1.1 Instrumentation, control and automation aspects -- 13.2 The Influent -- 13.3 Treatment Technologies -- 13.4 Instrumentation -- 13.5 Monitoring -- 13.6 Actuators -- 13.7 Operating Competence -- 13.8 The Need for Standardization -- 13.9 Conclusions -- References.
Chapter 14: High acceptance of source-separating technologies - but... -- 14.1 Introduction -- 14.2 Social Science Methods -- 14.2.1 Quantitative questionnaire surveys -- 14.2.2 Qualitative methods -- 14.3 Acceptance of Nomix Technology -- 14.3.1 Some results from qualitative approaches -- 14.3.2 Results from quantitative approaches -- 14.4 Acceptance of Urine-Based Fertilizers -- 14.5 Technology Requirements and Outlook -- 14.5.1 Drawbacks of NoMix toilets for users -- 14.6 Conclusions -- References -- Chapter 15: Market success of on-site treatment: a systemic innovation problem -- 15.1 Introduction -- 15.2 The Systemic Innovation Problem -- 15.3 The German On-Site Industry -- 15.4 Major Innovation Challenges -- 15.5 Three Potential Trajectories -- 15.6 Conclusions -- References -- Part III: Potential technologies for source separation -- Chapter 16: Conceptualizing sanitation systems to account for new complexities in processing and management -- 16.1 Introduction -- 16.2 Emerging Products -- 16.3 Functional Groups for Targeted Product Processing -- 16.3.1 User interface -- 16.3.2 Collection and storage -- 16.3.3 Conveyance -- 16.3.4 Treatment -- 16.3.5 Use and disposal -- 16.4 Operation and Management: Implications for System Boundaries -- 16.4.1 User interface -- 16.4.2 Collection and storage -- 16.4.3 Conveyance -- 16.4.4 Treatment -- 16.4.5 Use and disposal -- 16.5 Conclusions and Recommendations -- References -- Chapter 17: Wastewater composition -- 17.1 Introduction -- 17.2 Domestic Wastewater Flows -- 17.3 Wastewater Flow Patterns -- 17.4 Blackwater -- 17.4.1 Yellowwater -- 17.4.2 Brownwater -- 17.5 Greywater -- 17.6 Proportional Contribution of Nutrients and Organics -- 17.7 Discussion and Significance -- References -- Chapter 18: Treatment of the solid fraction -- 18.1 Introduction -- 18.2 Composition of Faecal Solids.
18.3 Treatment Goals -- 18.4 Composting -- 18.4.1 Process description -- 18.4.2 Stage of development -- 18.4.3 Operational requirements -- 18.4.4 Environmental and health concerns -- 18.4.5 Configurations -- 18.5 Vermicomposting -- 18.5.1 Process description -- 18.5.2 Stage of development -- 18.5.3 Operational requirements -- 18.5.4 Environmental and health concerns -- 18.5.5 Configurations -- 18.6 Terra Preta Sanitation -- 18.6.1 Process description and stage of development -- 18.6.2 Operational requirements -- 18.6.3 Environmental and health concerns -- 18.6.4 Configuration -- 18.7 Dehydration -- 18.7.1 Process description -- 18.7.2 Stage of development -- 18.7.3 Operational requirements -- 18.7.4 Environmental and health concerns -- 18.7.5 Configurations -- 18.8 Pasteurization -- 18.9 Conclusions and Outlook -- References -- Chapter 19: Aerobic elimination of organics and pathogens: greywater treatment -- 19.1 Introduction -- 19.2 Composition and Treatability -- 19.2.1 Organic compounds -- 19.2.2 Xenobiotics -- 19.2.3 Pathogens -- 19.3 Technologies for Aerobic Treatment -- 19.3.1 Removal of organic compounds -- 19.3.2 Xenobiotics removal -- 19.3.3 Pathogen removal -- 19.4 Conclusions -- References -- Chapter 20: Biological nitrogen conversion processes -- 20.1 Introduction -- 20.2 Biological Nitrogen Conversion -- 20.2.1 Nitrogen uptake -- 20.2.2 Nitrification -- 20.2.3 Heterotrophic denitrification -- 20.2.4 Anaerobic ammonium oxidation(Anammox) -- 20.3 Nitrogen Stabilization in Urine -- 20.3.1 Conditions in stored urine -- 20.3.2 Nitrification without base dosage -- 20.3.3 Complete ammonia oxidation with base dosage -- 20.3.4 Use of nitrified urine -- 20.4 Nitrogen Removal from Urine -- 20.4.1 Nitritation/anammox in a two-reactor set-up -- 20.4.2 Nitritation/anammox in a single reactor -- 20.5 Nitrogen Removal from Blackwater.
20.5.1 Blackwater collected in vacuum toilets.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Copyright -- Contents -- Authors' List -- Preface -- Chapter 1: Editorial -- Part I: The advantages of source separation and decentralization -- Chapter 2: The energy issue in urban water management -- 2.1 Introduction - Think Globally and Act Locally -- 2.2 Global Energy Goal -- 2.3 Renewable Energy Sources -- 2.4 Photosynthesis, Biomass, and BOD -- 2.5 Microbial Energy Conversion -- 2.6 Nutrient Recovery -- 2.7 New Biomass from Photosynthetic Microorganisms -- 2.8 Lower Energy Use -- 2.9 The Impact of Source Separation and Decentralization -- References -- Chapter 3: Peak phosphorus and the role of P recovery in achieving food security -- 3.1 Introduction -- 3.2 Phosphorus and Global Food Security -- 3.3 Global Phosphorus Scarcity and Pollution -- 3.4 Five Dimensions of Phosphorus Scarcity -- 3.5 Phosphorus Use in the Global Food System -- 3.6 Achieving Phosphorus Security -- 3.6.1 An integrated approach is required -- 3.6.2 The role of decentralized sanitation systems -- 3.6.3 Key challenges and opportunities -- 3.7 Conclusions -- References -- Chapter 4: Nitrogen economy of the 21st Century -- 4.1 Introduction -- 4.2 Nitrogen Sources -- 4.3 Release of Nitrogen to the Environment -- 4.4 Environmental Consequences -- 4.5 The Future and Possible Interventions -- 4.6 Conclusions -- References -- Chapter 5: Urban water supply under expanding water scarcity -- 5.1 Introduction -- 5.2 Water Supply of Urban Areas -- 5.2.1 On the verge of a new water scarcity -- 5.3 Implications of Increasing Competition? -- 5.4 Adapting to Increasing Water Shortage -- 5.5 Reasonable Blue-Water Allocation -- 5.6 Irrigation Potential -- 5.7 Additive Versus Competing Water Uses -- 5.8 Conclusion -- Acknowledgement -- References -- Chapter 6: The issue of micropollutants in urban water management -- 6.1 Introduction.

6.2 Parent Compounds, Metabolites and Transformation Products -- 6.3 Classification -- 6.4 Some Examples of Micropollutants -- 6.4.1 Flame retardants -- 6.4.2 Biocides and pesticides -- 6.4.3 Endocrine disrupting chemicals -- 6.4.4 Anti-corrosive additives -- 6.4.5 Personal care products -- 6.4.6 Perfluorinated surfactants - PFOS and PFOA -- 6.4.7 Pharmaceuticals -- 6.4.8 Artificial sweeteners -- 6.4.9 Engineered nanoparticles -- 6.5 Management Options -- 6.5.1 Technology -- 6.5.2 Education and training -- 6.5.3 Source separation -- 6.5.4 Benign by design -- References -- Chapter 7: Full costs, (dis-)economies of scale and the price of uncertainty -- 7.1 Introduction -- 7.2 Conveyance-Based Wastewater Treatment -- 7.3 (dis-)Economies of Scale -- 7.4 Deficits of the Net Present Value Method -- 7.5 The Cost of Uncertainty -- 7.6 On-Site Treatment Systems -- 7.7 Conclusions -- References -- Chapter 8: The rationale for decentralization of wastewater infrastructure -- 8.1 Types of Wastewater Infrastructure -- 8.2 Centralized Treatment Systems -- 8.3 Distributed Centralized Systems -- 8.4 Centralized Systems with Satellites -- 8.4.1 Implementation of satellite systems -- 8.5 Decentralized Systems -- 8.5.1 Types of decentralized wastewater systems -- 8.5.2 Historical development of decentralized systems -- 8.5.3 Modern development of decentralized systems -- 8.5.4 Advantages and disadvantages of decentralization -- 8.5.5 Continued developments in decentralized systems -- 8.5.6 Future evolution of decentralized wastewater systems -- 8.6 The Future -- 8.7 Summary -- References -- Chapter 9: Cities of the global South - is decentralized sanitation a solution? -- 9.1 Introduction -- 9.2 Centralized Systems -- 9.3 Unbundling -- 9.3.1 The value chain -- 9.3.2 Vertical unbundling -- 9.3.3 Horizontal unbundling -- 9.4 Decentralization -- 9.5 Technologies.

9.6 Creating Incentives -- 9.6.1 Contractual incentives -- 9.6.2 Financial incentives -- 9.6.3 Political incentives -- 9.6.4 Professional incentives -- 9.7 Summary -- References -- Part II: The challenges of source separation and decentralization -- Chapter 10: Implementation of source separation and decentralization in cities -- 10.1 Introduction -- 10.2 The Main Advantages of Source Separation and Decentralization in Cities -- 10.3 Challenges of Source Separation and Decentralization in Cities -- 10.3.1 The challenge of transport -- 10.3.2 The challenge of developing treatment processes -- 10.4 Transition -- 10.5 Conclusions -- References -- Chapter 11: Hygiene, a major challenge for source separation and decentralization -- 11.1 Introduction -- 11.2 Hazard Identification in a System Perspective -- 11.3 Human Exposure Assessment -- 11.4 Treatment Barriers and Examples of Their Reduction Efficiency -- 11.5 Quantifications of Risks and Risk-Benefit Strategies -- 11.6 Future Challenges and Knowledge Gaps -- References -- Chapter 12: Closing the loop: Recycling nutrients to agriculture -- 12.1 Nutrient Balance Close to Crop Removal -- 12.2 Source-Separated Toilet Wastes are Unique Biological Fertilizers -- 12.3 Nutrient Requirements and Fertilizers Used in Practice -- 12.4 Economic and GWP Value of Nutrients -- 12.5 Urine is Very Low in Pollutants -- 12.6 Low Hygiene Risk -- 12.7 Spreading Machinery -- 12.8 The Farmer - Businessman, Soil Steward and Entrepreneur -- References -- Chapter 13: The potential of control and monitoring -- 13.1 Introduction -- 13.1.1 Instrumentation, control and automation aspects -- 13.2 The Influent -- 13.3 Treatment Technologies -- 13.4 Instrumentation -- 13.5 Monitoring -- 13.6 Actuators -- 13.7 Operating Competence -- 13.8 The Need for Standardization -- 13.9 Conclusions -- References.

Chapter 14: High acceptance of source-separating technologies - but... -- 14.1 Introduction -- 14.2 Social Science Methods -- 14.2.1 Quantitative questionnaire surveys -- 14.2.2 Qualitative methods -- 14.3 Acceptance of Nomix Technology -- 14.3.1 Some results from qualitative approaches -- 14.3.2 Results from quantitative approaches -- 14.4 Acceptance of Urine-Based Fertilizers -- 14.5 Technology Requirements and Outlook -- 14.5.1 Drawbacks of NoMix toilets for users -- 14.6 Conclusions -- References -- Chapter 15: Market success of on-site treatment: a systemic innovation problem -- 15.1 Introduction -- 15.2 The Systemic Innovation Problem -- 15.3 The German On-Site Industry -- 15.4 Major Innovation Challenges -- 15.5 Three Potential Trajectories -- 15.6 Conclusions -- References -- Part III: Potential technologies for source separation -- Chapter 16: Conceptualizing sanitation systems to account for new complexities in processing and management -- 16.1 Introduction -- 16.2 Emerging Products -- 16.3 Functional Groups for Targeted Product Processing -- 16.3.1 User interface -- 16.3.2 Collection and storage -- 16.3.3 Conveyance -- 16.3.4 Treatment -- 16.3.5 Use and disposal -- 16.4 Operation and Management: Implications for System Boundaries -- 16.4.1 User interface -- 16.4.2 Collection and storage -- 16.4.3 Conveyance -- 16.4.4 Treatment -- 16.4.5 Use and disposal -- 16.5 Conclusions and Recommendations -- References -- Chapter 17: Wastewater composition -- 17.1 Introduction -- 17.2 Domestic Wastewater Flows -- 17.3 Wastewater Flow Patterns -- 17.4 Blackwater -- 17.4.1 Yellowwater -- 17.4.2 Brownwater -- 17.5 Greywater -- 17.6 Proportional Contribution of Nutrients and Organics -- 17.7 Discussion and Significance -- References -- Chapter 18: Treatment of the solid fraction -- 18.1 Introduction -- 18.2 Composition of Faecal Solids.

18.3 Treatment Goals -- 18.4 Composting -- 18.4.1 Process description -- 18.4.2 Stage of development -- 18.4.3 Operational requirements -- 18.4.4 Environmental and health concerns -- 18.4.5 Configurations -- 18.5 Vermicomposting -- 18.5.1 Process description -- 18.5.2 Stage of development -- 18.5.3 Operational requirements -- 18.5.4 Environmental and health concerns -- 18.5.5 Configurations -- 18.6 Terra Preta Sanitation -- 18.6.1 Process description and stage of development -- 18.6.2 Operational requirements -- 18.6.3 Environmental and health concerns -- 18.6.4 Configuration -- 18.7 Dehydration -- 18.7.1 Process description -- 18.7.2 Stage of development -- 18.7.3 Operational requirements -- 18.7.4 Environmental and health concerns -- 18.7.5 Configurations -- 18.8 Pasteurization -- 18.9 Conclusions and Outlook -- References -- Chapter 19: Aerobic elimination of organics and pathogens: greywater treatment -- 19.1 Introduction -- 19.2 Composition and Treatability -- 19.2.1 Organic compounds -- 19.2.2 Xenobiotics -- 19.2.3 Pathogens -- 19.3 Technologies for Aerobic Treatment -- 19.3.1 Removal of organic compounds -- 19.3.2 Xenobiotics removal -- 19.3.3 Pathogen removal -- 19.4 Conclusions -- References -- Chapter 20: Biological nitrogen conversion processes -- 20.1 Introduction -- 20.2 Biological Nitrogen Conversion -- 20.2.1 Nitrogen uptake -- 20.2.2 Nitrification -- 20.2.3 Heterotrophic denitrification -- 20.2.4 Anaerobic ammonium oxidation(Anammox) -- 20.3 Nitrogen Stabilization in Urine -- 20.3.1 Conditions in stored urine -- 20.3.2 Nitrification without base dosage -- 20.3.3 Complete ammonia oxidation with base dosage -- 20.3.4 Use of nitrified urine -- 20.4 Nitrogen Removal from Urine -- 20.4.1 Nitritation/anammox in a two-reactor set-up -- 20.4.2 Nitritation/anammox in a single reactor -- 20.5 Nitrogen Removal from Blackwater.

20.5.1 Blackwater collected in vacuum toilets.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.