ORPP logo
Image from Google Jackets

OLED Display Fundamentals and Applications.

By: Material type: TextTextSeries: Wiley Series in Display Technology SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Edition: 2nd edDescription: 1 online resource (308 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119187325
Subject(s): Genre/Form: Additional physical formats: Print version:: OLED Display Fundamentals and ApplicationsDDC classification:
  • 621.3815/422
LOC classification:
  • TK7882.I6 T84 2017
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- Series Editor's Foreword to the Second Edition -- Chapter 1 Introduction -- References -- Chapter 2 OLED Devices -- 2.1 OLED Definition -- 2.1.1 History of OLED Research and Development -- 2.1.2 Luminescent Effects in Nature -- 2.1.3 Difference Between OLED, LED, and Inorganic ELs -- 2.1.3.1 Inorganic EL -- 2.1.3.2 LED -- 2.2 Basic Device Structure -- 2.3 Basic Light Emission Mechanism -- 2.3.1 Potential Energy of Molecules -- 2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO) -- 2.3.3 Configuration of Two Electrons -- 2.3.4 Spin Function -- 2.3.5 Singlet and Triplet Excitons -- 2.3.6 Charge Injection from Electrodes -- 2.3.6.1 Charge Injection by Schottky Thermionic Emission -- 2.3.6.2 Tunneling Injection -- 2.3.6.3 Vacuum-Level Shift -- 2.3.7 Charge Transfer and Recombination -- 2.3.7.1 Charge Transfer Behavior -- 2.3.7.2 Space-Charge-Limited Current -- 2.3.7.3 Poole-Frenkel conduction -- 2.3.7.4 Recombination and Generation of Excitons -- 2.4 Emission Efficiency -- 2.4.1 Internal/External Quantum Efficiency -- 2.4.2 Energy Conversion and Quenching -- 2.4.2.1 Internal Conversion -- 2.4.2.2 Intersystem Crossing -- 2.4.2.3 Doping -- 2.4.2.4 Quenching -- 2.4.3 Outcoupling Efficiency of OLED Display -- 2.4.3.1 Light Output Distribution -- 2.4.3.2 Snell's Law and Critical Angle -- 2.4.3.3 Loss Due to Light Extraction -- 2.4.3.4 Performance Enhancement by Molecular Alignment -- 2.5 Lifetime and Image Burning -- 2.5.1 Lifetime Definitions -- 2.5.2 Degradation Analysis and Design Optimization -- 2.5.3 Degradation Measurement and Mechanisms -- 2.5.3.1 Acceleration Factor and Temperature Contribution -- 2.5.3.2 Degradation Mechanism Variation -- 2.6 Technologies to Enhance the Device Performance -- 2.6.1 Thermally Activated Delayed Fluorescence.
2.6.2 Other Types of Excited States -- 2.6.2.1 Excimer and Exciplex -- 2.6.2.2 Charge-Transfer Complex -- 2.6.3 Charge Generation Layer -- References -- Chapter 3 OLED Manufacturing Process -- 3.1 Material Preparation -- 3.1.1 Basic Material Properties -- 3.1.1.1 Hole Injection Material -- 3.1.1.2 Hole Transportation Material -- 3.1.1.3 Emission Layer Material -- 3.1.1.4 Electron Transportation Material and Charge Blocking Material -- 3.1.2 Purification Process -- 3.2 Evaporation Process -- 3.2.1 Principle -- 3.2.2 Evaporation Sources -- 3.2.2.1 Resistive Heating Method -- 3.2.2.2 Electron Beam Evaporation -- 3.2.2.3 Monitoring Thickness Using a Quartz Oscillator -- 3.3 Encapsulation -- 3.3.1 Dark Spot and Edge Growth Defects -- 3.3.2 Light Emission from the Bottom and Top of the OLED Device -- 3.3.3 Bottom Emission and perimeter sealing -- 3.3.4 Top Emission -- 3.3.5 Encapsulation Technologies and Measurement -- 3.3.5.1 Thin-Film Encapsulation -- 3.3.5.2 Face Sealing Encapsulation -- 3.3.5.3 Frit Encapsulation -- 3.3.5.4 WVTR Measurement -- 3.4 Problem Analysis -- 3.4.1 Ionization Potential Measurement -- 3.4.2 Electron Affinity Measurement -- 3.4.3 HPLC Analysis -- 3.4.4 Cyclic Voltammetry -- References -- Chapter 4 OLED Display Module -- 4.1 Comparison Between OLED and LCD Modules -- 4.2 Basic Display Design and Related Characteristics -- 4.2.1 Luminous Intensity, Luminance, and Illuminance -- 4.2.1.1 Luminous Intensity -- 4.2.1.2 Luminance -- 4.2.1.3 Illuminance -- 4.2.1.4 Metrics Summary -- 4.2.1.5 Helmholtz-Kohlrausch Effect -- 4.2.2 OLED Current Efficiencies and Power Efficacies -- 4.2.3 Color Reproduction -- 4.2.4 Uniform Color Space -- 4.2.5 White Point Determination -- 4.2.6 Color Boost -- 4.2.7 Viewing Condition -- 4.3 Passive-Matrix OLED Display -- 4.3.1 Structure -- 4.3.2 Pixel Driving -- 4.4 Active-Matrix OLED Display.
4.4.1 OLED Module Components -- 4.4.2 Two-Transistor One-Capacitor (2T1C) Driving Circuit -- 4.4.3 Ambient Performance -- 4.4.3.1 Living Room Contrast Ratio -- 4.4.3.2 Chroma Reduction Due to Ambient Light -- 4.4.4 Subpixel Rendering -- References -- Chapter 5 OLED Color Patterning Technologies -- 5.1 Color-Patterning Technologies -- 5.1.1 Shadow Mask Patterning -- 5.1.1.1 Shadow Mask Process -- 5.1.1.2 Blue Common Layer -- 5.1.1.3 Polychromatic Pixel -- 5.1.2 White + Color Filter Patterning -- 5.1.3 Color Conversion Medium (CCM) Patterning -- 5.1.4 Laser-Induced Thermal Imaging (LITI) Method -- 5.1.5 Radiation-Induced Sublimation Transfer (RIST) Method -- 5.1.6 Dual-Plate OLED Display (DOD) Method -- 5.1.7 Other Methods -- 5.2 Solution-Processed Materials and Technologies -- 5.3 Next-Generation OLED Manufacturing Tools -- 5.3.1 Vapor Injection Source Technology (VIST) Deposition -- 5.3.2 Hot-Wall Method -- 5.3.3 Organic Vapor-Phase Deposition (OVPD) Method -- References -- Chapter 6 TFT and Driving for Active-Matrix Display -- 6.1 TFT Structure -- 6.2 TFT Process -- 6.2.1 Low-Temperature Polysilicon Process Overview -- 6.2.2 Thin-Film Formation -- 6.2.3 Patterning Technique -- 6.2.4 Excimer Laser Crystallization -- 6.3 MOSFET Basics -- 6.4 LTPS-TFT-Driven OLED Display Design -- 6.4.1 OFF Current -- 6.4.2 Driver TFT Size Restriction -- 6.4.3 Restriction Due to Voltage Drop -- 6.4.4 LTPS-TFT Pixel Compensation Circuit -- 6.4.4.1 Voltage Programming -- 6.4.4.2 Current Programming -- 6.4.4.3 External Compensation Method -- 6.4.4.4 Digital Driving -- 6.4.5 Circuit Integration by LTPS-TFT -- 6.5 TFT Technologies for OLED Displays -- 6.5.1 Selective Annealing Method -- 6.5.1.1 Sequential Lateral Solidification (SLS) Method -- 6.5.1.2 Selective Annealing by Microlens Array -- 6.5.2 Microcrystalline and Superamorphous Silicon.
6.5.3 Solid-Phase Crystallization -- 6.5.3.1 MIC and MILC Methods -- 6.5.3.2 AMFC Method -- 6.5.4 Oxide Semiconductors -- References -- Chapter 7 OLED Television Applications -- 7.1 Performance Target -- 7.2 Scalability Concept -- 7.2.1 Relationship between Defect Density and Production Yield -- 7.2.1.1 Purpose of Yield Simulation -- 7.2.1.2 Defective Pixel Number Estimation Using the Poisson Equation -- 7.2.2 Scalable Technology -- 7.2.2.1 Scalability -- 7.3 Murdoch's Algorithm to Achieve Low Power and Wide Color Gamut -- 7.3.1 A Method for Achieving Both Low Power and Wide Color Gamut -- 7.3.2 RGBW Driving Algorithm -- 7.4 An Approach to Achieve 100 NTSC Color Gamut With Low Power Consumption Using White + Color Filter -- 7.4.1 Consideration of Performance Difference between W-RGB and W-RGBW Method -- 7.4.1.1 Issues of White + Color Filter Method for Large Displays -- 7.4.1.2 Analysis of W-RGBW Approach to Circumvent Its Trade-off Situation -- 7.4.1.3 Design of a Prototype to Demonstrate That Low Power Consumption Can Be Achieved with Large Color Gamut -- 7.4.1.4 Product-Level Performance Demonstration by the Combination of Scalable Technologies -- References -- Chapter 8 New OLED Applications -- 8.1 Flexible Display/Wearable Displays -- 8.1.1 Flexible Display Applications -- 8.1.2 Flexible Display Substrates -- 8.1.3 Laser Liftoff Process -- 8.1.4 Barrier Technology for Flexible Displays -- 8.1.5 Organic TFTs for Flexible Displays -- 8.1.5.1 Organic Semiconductor Materials -- 8.1.5.2 Organic TFT Device Structure and Processing -- 8.1.5.3 Organic TFT Characteristics -- 8.2 Transparent Displays -- 8.3 Tiled Display -- 8.3.1 Passive-Matrix Tiling -- 8.3.2 Active-Matrix Tiling -- References -- Chapter 9 OLED Lighting -- 9.1 Performance Improvement of OLED Lighting -- 9.2 Color Rendering Index -- 9.3 OLED Lighting Requirement.
9.3.1 Correlated Color Temperature (CCT) -- 9.3.2 Other Requirements -- 9.4 Light Extraction Enhancement of OLED Lighting -- 9.4.1 Various Light Absorption Mechanisms -- 9.4.2 Microlens Array Structure -- 9.4.3 Diffusion Structure -- 9.4.4 Diffraction Structure -- 9.4.5 Reduction of Plasmon Absorption -- 9.4.5.1 Plasmonic Loss Mechanism -- 9.5 Color Tunable OLED Lighting -- 9.6 OLED Lighting Design -- 9.6.1 Resistance Reduction -- 9.6.2 Current Reduction -- 9.7 Roll-to-Roll OLED Lighting Manufacturing -- References -- Appendix -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- Series Editor's Foreword to the Second Edition -- Chapter 1 Introduction -- References -- Chapter 2 OLED Devices -- 2.1 OLED Definition -- 2.1.1 History of OLED Research and Development -- 2.1.2 Luminescent Effects in Nature -- 2.1.3 Difference Between OLED, LED, and Inorganic ELs -- 2.1.3.1 Inorganic EL -- 2.1.3.2 LED -- 2.2 Basic Device Structure -- 2.3 Basic Light Emission Mechanism -- 2.3.1 Potential Energy of Molecules -- 2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO) -- 2.3.3 Configuration of Two Electrons -- 2.3.4 Spin Function -- 2.3.5 Singlet and Triplet Excitons -- 2.3.6 Charge Injection from Electrodes -- 2.3.6.1 Charge Injection by Schottky Thermionic Emission -- 2.3.6.2 Tunneling Injection -- 2.3.6.3 Vacuum-Level Shift -- 2.3.7 Charge Transfer and Recombination -- 2.3.7.1 Charge Transfer Behavior -- 2.3.7.2 Space-Charge-Limited Current -- 2.3.7.3 Poole-Frenkel conduction -- 2.3.7.4 Recombination and Generation of Excitons -- 2.4 Emission Efficiency -- 2.4.1 Internal/External Quantum Efficiency -- 2.4.2 Energy Conversion and Quenching -- 2.4.2.1 Internal Conversion -- 2.4.2.2 Intersystem Crossing -- 2.4.2.3 Doping -- 2.4.2.4 Quenching -- 2.4.3 Outcoupling Efficiency of OLED Display -- 2.4.3.1 Light Output Distribution -- 2.4.3.2 Snell's Law and Critical Angle -- 2.4.3.3 Loss Due to Light Extraction -- 2.4.3.4 Performance Enhancement by Molecular Alignment -- 2.5 Lifetime and Image Burning -- 2.5.1 Lifetime Definitions -- 2.5.2 Degradation Analysis and Design Optimization -- 2.5.3 Degradation Measurement and Mechanisms -- 2.5.3.1 Acceleration Factor and Temperature Contribution -- 2.5.3.2 Degradation Mechanism Variation -- 2.6 Technologies to Enhance the Device Performance -- 2.6.1 Thermally Activated Delayed Fluorescence.

2.6.2 Other Types of Excited States -- 2.6.2.1 Excimer and Exciplex -- 2.6.2.2 Charge-Transfer Complex -- 2.6.3 Charge Generation Layer -- References -- Chapter 3 OLED Manufacturing Process -- 3.1 Material Preparation -- 3.1.1 Basic Material Properties -- 3.1.1.1 Hole Injection Material -- 3.1.1.2 Hole Transportation Material -- 3.1.1.3 Emission Layer Material -- 3.1.1.4 Electron Transportation Material and Charge Blocking Material -- 3.1.2 Purification Process -- 3.2 Evaporation Process -- 3.2.1 Principle -- 3.2.2 Evaporation Sources -- 3.2.2.1 Resistive Heating Method -- 3.2.2.2 Electron Beam Evaporation -- 3.2.2.3 Monitoring Thickness Using a Quartz Oscillator -- 3.3 Encapsulation -- 3.3.1 Dark Spot and Edge Growth Defects -- 3.3.2 Light Emission from the Bottom and Top of the OLED Device -- 3.3.3 Bottom Emission and perimeter sealing -- 3.3.4 Top Emission -- 3.3.5 Encapsulation Technologies and Measurement -- 3.3.5.1 Thin-Film Encapsulation -- 3.3.5.2 Face Sealing Encapsulation -- 3.3.5.3 Frit Encapsulation -- 3.3.5.4 WVTR Measurement -- 3.4 Problem Analysis -- 3.4.1 Ionization Potential Measurement -- 3.4.2 Electron Affinity Measurement -- 3.4.3 HPLC Analysis -- 3.4.4 Cyclic Voltammetry -- References -- Chapter 4 OLED Display Module -- 4.1 Comparison Between OLED and LCD Modules -- 4.2 Basic Display Design and Related Characteristics -- 4.2.1 Luminous Intensity, Luminance, and Illuminance -- 4.2.1.1 Luminous Intensity -- 4.2.1.2 Luminance -- 4.2.1.3 Illuminance -- 4.2.1.4 Metrics Summary -- 4.2.1.5 Helmholtz-Kohlrausch Effect -- 4.2.2 OLED Current Efficiencies and Power Efficacies -- 4.2.3 Color Reproduction -- 4.2.4 Uniform Color Space -- 4.2.5 White Point Determination -- 4.2.6 Color Boost -- 4.2.7 Viewing Condition -- 4.3 Passive-Matrix OLED Display -- 4.3.1 Structure -- 4.3.2 Pixel Driving -- 4.4 Active-Matrix OLED Display.

4.4.1 OLED Module Components -- 4.4.2 Two-Transistor One-Capacitor (2T1C) Driving Circuit -- 4.4.3 Ambient Performance -- 4.4.3.1 Living Room Contrast Ratio -- 4.4.3.2 Chroma Reduction Due to Ambient Light -- 4.4.4 Subpixel Rendering -- References -- Chapter 5 OLED Color Patterning Technologies -- 5.1 Color-Patterning Technologies -- 5.1.1 Shadow Mask Patterning -- 5.1.1.1 Shadow Mask Process -- 5.1.1.2 Blue Common Layer -- 5.1.1.3 Polychromatic Pixel -- 5.1.2 White + Color Filter Patterning -- 5.1.3 Color Conversion Medium (CCM) Patterning -- 5.1.4 Laser-Induced Thermal Imaging (LITI) Method -- 5.1.5 Radiation-Induced Sublimation Transfer (RIST) Method -- 5.1.6 Dual-Plate OLED Display (DOD) Method -- 5.1.7 Other Methods -- 5.2 Solution-Processed Materials and Technologies -- 5.3 Next-Generation OLED Manufacturing Tools -- 5.3.1 Vapor Injection Source Technology (VIST) Deposition -- 5.3.2 Hot-Wall Method -- 5.3.3 Organic Vapor-Phase Deposition (OVPD) Method -- References -- Chapter 6 TFT and Driving for Active-Matrix Display -- 6.1 TFT Structure -- 6.2 TFT Process -- 6.2.1 Low-Temperature Polysilicon Process Overview -- 6.2.2 Thin-Film Formation -- 6.2.3 Patterning Technique -- 6.2.4 Excimer Laser Crystallization -- 6.3 MOSFET Basics -- 6.4 LTPS-TFT-Driven OLED Display Design -- 6.4.1 OFF Current -- 6.4.2 Driver TFT Size Restriction -- 6.4.3 Restriction Due to Voltage Drop -- 6.4.4 LTPS-TFT Pixel Compensation Circuit -- 6.4.4.1 Voltage Programming -- 6.4.4.2 Current Programming -- 6.4.4.3 External Compensation Method -- 6.4.4.4 Digital Driving -- 6.4.5 Circuit Integration by LTPS-TFT -- 6.5 TFT Technologies for OLED Displays -- 6.5.1 Selective Annealing Method -- 6.5.1.1 Sequential Lateral Solidification (SLS) Method -- 6.5.1.2 Selective Annealing by Microlens Array -- 6.5.2 Microcrystalline and Superamorphous Silicon.

6.5.3 Solid-Phase Crystallization -- 6.5.3.1 MIC and MILC Methods -- 6.5.3.2 AMFC Method -- 6.5.4 Oxide Semiconductors -- References -- Chapter 7 OLED Television Applications -- 7.1 Performance Target -- 7.2 Scalability Concept -- 7.2.1 Relationship between Defect Density and Production Yield -- 7.2.1.1 Purpose of Yield Simulation -- 7.2.1.2 Defective Pixel Number Estimation Using the Poisson Equation -- 7.2.2 Scalable Technology -- 7.2.2.1 Scalability -- 7.3 Murdoch's Algorithm to Achieve Low Power and Wide Color Gamut -- 7.3.1 A Method for Achieving Both Low Power and Wide Color Gamut -- 7.3.2 RGBW Driving Algorithm -- 7.4 An Approach to Achieve 100 NTSC Color Gamut With Low Power Consumption Using White + Color Filter -- 7.4.1 Consideration of Performance Difference between W-RGB and W-RGBW Method -- 7.4.1.1 Issues of White + Color Filter Method for Large Displays -- 7.4.1.2 Analysis of W-RGBW Approach to Circumvent Its Trade-off Situation -- 7.4.1.3 Design of a Prototype to Demonstrate That Low Power Consumption Can Be Achieved with Large Color Gamut -- 7.4.1.4 Product-Level Performance Demonstration by the Combination of Scalable Technologies -- References -- Chapter 8 New OLED Applications -- 8.1 Flexible Display/Wearable Displays -- 8.1.1 Flexible Display Applications -- 8.1.2 Flexible Display Substrates -- 8.1.3 Laser Liftoff Process -- 8.1.4 Barrier Technology for Flexible Displays -- 8.1.5 Organic TFTs for Flexible Displays -- 8.1.5.1 Organic Semiconductor Materials -- 8.1.5.2 Organic TFT Device Structure and Processing -- 8.1.5.3 Organic TFT Characteristics -- 8.2 Transparent Displays -- 8.3 Tiled Display -- 8.3.1 Passive-Matrix Tiling -- 8.3.2 Active-Matrix Tiling -- References -- Chapter 9 OLED Lighting -- 9.1 Performance Improvement of OLED Lighting -- 9.2 Color Rendering Index -- 9.3 OLED Lighting Requirement.

9.3.1 Correlated Color Temperature (CCT) -- 9.3.2 Other Requirements -- 9.4 Light Extraction Enhancement of OLED Lighting -- 9.4.1 Various Light Absorption Mechanisms -- 9.4.2 Microlens Array Structure -- 9.4.3 Diffusion Structure -- 9.4.4 Diffraction Structure -- 9.4.5 Reduction of Plasmon Absorption -- 9.4.5.1 Plasmonic Loss Mechanism -- 9.5 Color Tunable OLED Lighting -- 9.6 OLED Lighting Design -- 9.6.1 Resistance Reduction -- 9.6.2 Current Reduction -- 9.7 Roll-to-Roll OLED Lighting Manufacturing -- References -- Appendix -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.