Genetics of Bone Biology and Skeletal Disease.
Material type:
- text
- computer
- online resource
- 9780128041987
- 616.7/1042
- RC930.4.G464 2018
Cover -- Title page -- Copyright page -- Contents -- List of Contributors -- Preface to the Second Edition -- Preface to the First Edition -- Section 1 - General Background to Genetics -- Chapter 1 - Introduction to Genetics of Skeletal and Mineral Metabolic Diseases -- 1 - Introduction -- 2 - Genetics of skeletal and mineral metabolic diseases -- 2.1 - Modes of Inheritance -- 2.2 - Genetic Heterogeneity and Monogenic Skeletal Diseases -- 2.3 - Identifying Genetic Abnormalities Causing Monogenic Diseases -- 2.4 - Identifying Genes Causing Polygenic Traits -- 2.5 - Molecular Insights From the Investigation of Monogenic Disorders and Polygenic Traits -- 2.6 - Genetic Understanding and Application to Development of Novel Therapeutics -- 3 - Approach to the patient with genetic skeletal/mineral metabolic disease -- 3.1 - Clinical Approach -- 3.2 - Medical History and Physical Examination -- 3.3 - Family Medical History for Determining Mode of Disease Inheritance -- 4 - Current genetic tests, their clinical utility, and interpretation -- 4.1 - Clinical Value of Genetic Testing -- 4.2 - Pretest Considerations-Which Test? -- 4.3 - Detection of Chromosomal Abnormalities, Copy Number Variations, and Mutations Causing Disease -- 4.3.1 - Karyotype -- 4.3.2 - Fluorescence In Situ Hybridization (FISH) -- 4.3.3 - Multiplex-Ligation Dependent Probe Amplification (MLPA) -- 4.3.4 - Whole Genome Arrays -- 4.3.5 - Microarray-Comparative Genomic Hybridization (aCGH) -- 4.3.6 - Single Nucleotide Polymorphism Arrays -- 4.3.7 - Single Gene Testing (Sanger Sequencing) -- 4.3.8 - Next-Generation Sequencing or Second-Generation Sequencing -- 4.4 - Challenges of Data Interpretation and Approaches to the Analysis of Variants Identified by NGS Platforms -- 4.4.1 - Variant Identification -- 4.4.2 - Variant Interpretation -- 4.5 - Special Circumstances for Genetic Testing.
4.5.1 - Detection of Mosaicism -- 4.5.2 - Prenatal Diagnosis -- 4.6 - Informed Consent and Ethical Considerations -- 5 - Conclusions -- References -- Chapter 2 - Epigenetics -- 1 - Introduction -- 2 - Epigenetic control mechanisms -- 2.1 - Histone Modifications and Chromatin Remodeling -- 2.2 - Histone Variants -- 2.3 - DNA Methylation -- 2.4 - Noncoding RNAs (ncRNAs) -- 3 - Transgenerational epigenetic inheritance -- 4 - Epigenetics and human disease -- 4.1 - Imprinting Disorders -- 4.2 - Cancer -- 4.3 - Other Diseases -- 4.4 - Epigenetic Therapy -- 5 - Conclusions -- References -- Chapter 3 - Genome-Wide Association Studies -- 1 - Introduction -- 2 - Linkage disequilibrium mapping -- 3 - Study design issues in genome-wide association studies -- 3.1 - Quality Control -- 4 - The "missing heritability" question -- 5 - Rare variant study designs -- 6 - Conclusions -- References -- Chapter 4 - Copy Number Variation -- 1 - Introduction -- 1.1 - Potential Mechanisms for Formation of CNVs -- 2 - CNV detection -- 3 - CNV and disease -- 3.1 - Obesity -- 3.2 - Schizophrenia -- 3.3 - Autism -- 3.4 - Cancer -- 3.5 - Congenital Heart Disease -- 4 - CNV and osteoporosis -- 5 - Conclusions -- Acknowledgments -- References -- Chapter 5 - Genomic Profiling in Bone -- 1 - Introduction -- 1.1 - Profiling Skeletal Cells and Bone Metabolism -- 1.2 - Profiling Location and Age Dependent Changes in Skeletal Gene Expression -- 1.3 - Profiling Biomechanical Effects on Bone -- 1.4 - Profiling Gene Expression Changes Occurring as a Function of Altered Bone Metabolism -- 1.4.1 - Profiling Bone in Animal Models With Impaired Bone Metabolism -- 1.4.2 - Profiling Osteoporosis in Humans -- 1.5 - Profiling Noncoding RNA Expression in Bone -- 2 - Conclusions -- Acknowledgments -- References -- Chapter 6 - Functional Genomics -- 1 - What is functional genomics?.
2 - Annotating the genome-an emerging picture -- 2.1 - Encode and Roadmap: An Overview -- 2.2 - DNase-seq -- 2.3 - ChIP-seq and Chromatin Profiling -- 2.3.1 - SP7/Osterix is Restricted to Bone-Forming Vertebrates Where it Acts as a Dlx Cofactor in Osteoblast Specification -- 2.3.2 - Distinct Transcriptional Programs Underlie Sox9 Regulation of the Mammalian Chondrocyte -- 2.3.3 - The Osteoblast-to-Osteocyte Transition: Epigenetic Changes and Response to the Vitamin D3 Hormone -- 2.3.4 - The Binding of Runx2 During Osteoblastogenesis -- 2.3.5 - Chromatin Profiling of Parathyroid Glands -- 3 - From annotated sequences to function -- 3.1 - In Situ Saturating Mutagenesis With CRISPR/Cas9 -- 3.2 - Multiplexed Reporter Assays (MPRA) to Assess Function of Expression-Modulating Variants -- 4 - Interrogation of cellular function: genome-wide gain- and loss-of-function screening in mammalian cells -- 4.1 - RNAi-Based Functional Genomics -- 4.2 - The Orfeome: A Tool for Gain-of-Function Screening -- 4.3 - Genetic Screens Using CRISPR/Cas9: The Next Frontier -- 5 - Outlook -- 6 - Summary -- References -- Chapter 7 - Mouse Models: Approaches to Generate In Vivo Models for Hereditary Disorders of Mineral and Skeletal Homeostasis -- 1 - Introduction -- 2 - Methods for generating mouse models -- 2.1 - Nontargeted Strategies -- 2.2 - Targeted Knock-Out Strategies -- 2.3 - Targeted Knock-In Strategies -- 3 - Genetic bone diseases associated with defective calcium homeostasis -- 3.1 - Disorders of Parathyroid Development -- 3.2 - Models for the DiGeorge Syndrome Type 1 Due to TBX1 Mutations -- 3.3 - Models for Familial Isolated Hypoparathyroidism Due to PTH and GCMB Mutations -- 3.4 - Disorders of PTH Signaling -- 3.5 - Blomstrand's Chondrodysplasia -- 3.6 - Jansen's Disease -- 3.7 - Pseudohypoparathyroidism -- 3.8 - Disorders of the Calcium-Sensing Receptor (CaSR).
3.9 - FHH and NSHPT Due to Loss-of-Function CaSR Mutations -- 3.10 - ADHH Due to Gain-of-Function CaSR Mutations -- 4 - Conclusions -- References -- Chapter 8 - Prospects of Gene Therapy for Skeletal Diseases -- 1 - Introduction -- 2 - Vectors in skeletal gene therapy -- 2.1 - Adenovirus -- 2.2 - Adeno-Associated Virus -- 2.3 - Retrovirus and Lentivirus -- 2.4 - Nonviral Vectors -- 2.5 - Conclusions -- 3 - Methods of gene delivery -- 3.1 - In Vivo Delivery -- 3.2 - Ex Vivo Delivery -- 4 - The immune response to gene therapy vectors -- 4.1 - The Innate Immune Response -- 4.2 - The Adaptive Immune Response -- 4.3 - Strategies to Limit Immune Reactions to Gene Therapy Vectors -- 5 - Gene therapy for pathologies of the skeletal system -- 5.1 - Bone -- 5.1.1 - Bone Healing and Osteogenesis -- 5.1.2 - Implant Stability and Aseptic Loosening -- 5.1.3 - Osteoporosis -- 5.1.4 - Osteogenesis Imperfecta -- 5.2 - Cartilage -- 5.2.1 - Osteoarthritis -- 5.2.2 - Rheumatoid Arthritis -- 5.3 - Tendon -- 5.4 - Intervertebral Disc -- 6 - Conclusions -- References -- Chapter 9 - Pharmacogenetics and Pharmacogenomics of Osteoporosis: Personalized Medicine Outlook -- 1 - Complexity of phenotypes -- 2 - Genetics of osteoporosis -- 2.1 - Candidate Genes -- 2.2 - Genome-Wide Studies -- 2.3 - Pathways -- 3 - Gene-gene interaction and "missing heritability" -- 4 - Pharmacogenetics of therapeutic response -- 5 - Toward individualized assessment and individualized treatment decisions -- 6 - Conclusions -- References -- Chapter 10 - Genetic Testing and Counseling -- 1 - Genetic testing -- 1.1 - Small-Scale Variants -- 1.2 - Large-Scale Variants -- 1.3 - Evolving Approaches to DNA-Based Genetic Testing -- 2 - Genetic testing for skeletal disorders -- 2.1 - Genetic Tests Available -- 2.2 - When to Order Genetic Testing -- 3 - Genetic counseling -- 3.1 - History.
3.2 - The Genetic Counseling Process -- 3.3 - The Genetic Counseling Session -- 3.3.1 - Family History -- 3.3.2 - Genetic Testing -- 3.3.3 - Communicating the Facts -- 3.3.4 - Counseling and Support -- References -- Section 2 - General Background to Bone Biology -- Chapter 11 - Biology of Bone and Cartilage -- 1 - Introduction -- 2 - Osteoclasts -- 2.1 - Regulation of Osteoclast Formation: The RANKL-RANK-OPG Pathway -- 2.2 - Transcription Factor Regulation of Osteoclastogenesis -- 2.3 - Costimulatory Signaling-Mediated Osteoclastogenesis -- 2.4 - RANKL/RANK Downstream Signaling -- 2.5 - Regulation of Osteoclast Activation -- 2.6 - Negative Regulation of Osteoclast Formation and Function -- 2.7 - Osteoclast Apoptosis -- 3 - Osteoblasts -- 3.1 - Transcription Factors and Signal Pathways -- 3.1.1 - BMP/RUNX2 Signaling -- 3.1.2 - Wingless (Wnt)-β-Catenin -- 3.1.3 - Notch -- 3.2 - Epigenetic Modifications -- 3.2.1 - DNA Methylation -- 3.2.2 - Histone Modification -- 3.2.3 - Micro-RNA -- 3.3 - Regulation of Osteoblast/Osteoclast Communication -- 3.3.1 - Ephrins -- 3.3.2 - Semaphorins -- 4 - Cartilage -- 4.1 - Chondrocyte Formation -- 4.2 - Endochondral Ossification -- 4.3 - Endochondral Ossification in the Adult Skeleton -- 4.4 - Formation of Articular Cartilage -- 4.5 - Cartilage Degeneration -- 5 - Conclusions -- References -- Chapter 12 - Overview of Bone Structure and Strength -- 1 - Introduction -- 2 - Bone biomechanics and the determinants of whole-bone strength -- 2.1 - Structural Versus Material Properties of Bone -- 2.2 - Mechanical Properties of Bone Tissue Depend on Loading Direction -- 2.3 - Determinants of Biomechanical Properties of Trabecular and Cortical Bone -- 3 - Contribution of bone geometry to bone strength -- 3.1 - Age-Related Changes in Bone Size and Shape -- 4 - Age-related changes in trabecular and cortical bone microarchitecture.
5 - Contribution of bone microarchitecture to bone strength.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.