ORPP logo
Image from Google Jackets

Pressure-Driven Microfluidics.

By: Material type: TextTextPublisher: Norwood : Artech House, 2007Copyright date: ©2007Edition: 1st edDescription: 1 online resource (422 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781596931350
Subject(s): Genre/Form: Additional physical formats: Print version:: Pressure-Driven MicrofluidicsDDC classification:
  • 620.106;629.8042
LOC classification:
  • TJ853 -- .T48 2007eb
Online resources:
Contents:
Intro -- Contents -- Preface -- Chapter 1 Introduction and Basic Concepts -- 1.1 MEANING AND USE OF MICROFLUIDICS -- 1.1.1 Why fluids? -- 1.1.2 Why devices without moving parts? -- 1.1.3 Why the small size? -- 1.2 BASIC PROPERTIES OF DEVICES -- 1.2.1 Terminals -- 1.2.2 Providing the driving pressure difference -- 1.3 FLOW CHARACTERIZATION PARAMETERS -- 1.3.1 Character of the flow and the Reynolds number Re -- 1.3.2 Scaling down and Re -- 1.3.3 Compressibility and the Mach number Ma -- 1.3.4 Relation to molecular scale: Knudsen number Kn -- 1.3.5 Periodic unsteady flows: Stokes and Strouhal numbers -- 1.4 REGIONS OF OPERATING PARAMETERS IN MICROFLUIDICS -- References -- Chapter 2 Basics of Driving Fluid by Pressure -- 2.1 PRESSURE AND VELOCITY -- 2.2 FLOW RATE AND CHANNEL CROSS-SECTIONS -- 2.2.1 Integral state parameter -- 2.2.2 Implications of manufacturing technology -- 2.3 STATE PARAMETERS -- 2.4 DISSIPATION OF FLUID ENERGY -- 2.4.1 Conversion ek-&gt -- eT -- 2.4.2 Steady-state characteristic and the characterization parameter Q -- 2.4.3 Total dissipation of jet energy -- 2.4.3 Dissipation in separated regions -- 2.4.5 Friction loss mechanism -- 2.4.6 Asymptotic subdynamic regime -- 2.5 STATE PARAMETERS FOR COMPRESSIBLE FLOWS -- 2.6 LAWS OF FLOW BRANCHING -- 2.6.1 Branching factors -- 2.6.2 Comparison with data for biological branchings -- 2.6.3 Optimality criteria dictated by manufacturing technology -- 2.7 UNSTEADY FLOW EFFECTS: INERTANCE -- 2.8 FLUID ACCUMULATION: CAPACITANCE -- 2.8.1 Accumulation mechanisms -- 2.8.2 Gravitational capacitance -- 2.8.3 Fluid compression capacitance -- 2.8.4 Capacitance due to wall elasticity -- 2.8.5 Capillary capacitance -- References -- Chapter 3 Simple Components and Devices -- 3.1 CONNECTING CHANNELS -- 3.2 AREA CONTRACTIONS AND NOZZLES -- 3.2.1 Characterization: search for a nozzle invariant.
3.2.2 Generation of free jets and droplets -- 3.2.3 Generating submerged jets -- 3.3 DIFFUSERS AND COLLECTORS -- 3.4 RESTRICTORS: OBSTACLES TO THE FLOW -- 3.5 DIODES -- 3.5.1 Labyrinth diodes -- 3.5.2 Vortex diodes -- 3.5.3 Reverse flow diverters -- 3.6 REACTORS AND HEAT EXCHANGERS -- 3.7 MIXERS -- 3.8 THREE-TERMINAL JET PUMP TRANSFORMERS -- 3.8.1 Venturi transformers: a nozzle and a diffuser -- 3.8.2 Essential facts about jet pump transformers: two nozzles and a diffuser -- 3.8.3 Common terminal and different connections into the circuit -- 3.9 TOWARD THE SUBDYNAMIC LIMIT -- References -- Chapter 4 Valves and Sophisticated Devices -- 4.1 LOADING CHARACTERISTICS -- 4.1.1 Loading a simple jet-type device -- 4.1.2 Passive flow control valves -- 4.1.3 Load-switching in a passive Coanda-effect valve -- 4.1.4 Passive jet-type pressure regulators -- 4.2 FLUIDIC CONTROL ACTION: ACTIVE VALVES -- 4.2.1 Jet deflection -- 4.2.2 Colliding jets -- 4.2.4 Separation and supercirculation -- 4.2.5 Displacement -- 4.2.6 Fluid "plug" -- 4.3 JET DEFLECTION -- 4.3.1 The deflection mechanism -- 4.3.2 Simplest example of the jet-deflection valve -- 4.3.3 Symmetric proportional control valves -- 4.3.4 Laminar proportional amplifiers -- 4.4 SWITCHING VALVES BASED ON THE COANDA EFFECT -- 4.4.1 Bistable diverter -- 4.4.2 Internal stabilizing feedback -- 4.4.3 Monostable diverters -- 4.4.4 Pressure recovery -- 4.4.5 Matching and importance of the no-spillover state -- 4.5 MULTIELEMENT VALVES AND MODULES -- 4.5.1 Amplified logical operations -- 4.5.2 Bistable vortex valves -- 4.5.3 Valves with "guard" flows -- 4.6 CAPILLARY VALVES -- 4.7 OSCILLATORS -- 4.7.1 The twin valve flip-flop -- 4.7.2 Jet-type valve with feedback loops -- 4.7.3 Feedback loop mechanisms -- 4.7.4 The internal feedback -- 4.7.5 Frequency dividers -- 4.8 FLUIDIC RECTIFIERS -- 4.8.1 The Grätz bridge circuit.
4.8.2 Jet-type rectifiers -- 4.8.3 Traveling wave pump -- References -- Chapter 5 Conversion Devices -- 5.1 CLASSIFICATION AND BASIC CONCEPTS -- 5.1.1 Signals -- 5.1.2 Conversion chains -- 5.1.3 "Incomplete" fluidic systems -- 5.2 M / F CONVERSION TO AND FROM MECHANICAL MOTION -- 5.2.1 Mechanical pumps and valves -- 5.2.1.1 Two basic pump types -- 5.2.1.2 Mechanical valves -- 5.2.2 Sensing position and motion by fluidics -- 5.2.2.1 Restrictor-type sensors -- 5.2.2.2 Jet-type M/F transducers -- 5.2.2.3 Sensors with an integral fluidic amplifier -- 5.2.2.4 Accelerometers -- 5.2.3 F/M actuators -- 5.2.4 F/M sensors and transducers -- 5.3 E / F : CONVERSION TO AND FROM ELECTRIC EFFECTS -- 5.3.1 Electric pumps and valves -- 5.3.1.1 Using ordinary fluids -- 5.3.2 E/F transducing -- 5.3 E / F - CONVERSION TO AND FROM ELECTRIC EFFECTS -- 5.3.1 Electric pumps and valves -- 5.3.1.1 Using ordinary fluids -- 5.3.2 E/F transducing -- 5.3.3 F/E power conversion -- 5.3.4 F/E signal transducers -- 5.3.4.2 Flowrate measurement and monitoring -- 5.4 A / F : COLLABORATION WITH ACOUSTICS -- 5.4.1 Acoustically driven pumps and separators -- 5.4.2 A/F signal conversion -- 5.4.3 F/A fluidically driven acoustic power generation -- 5.4.4 Fluidic and acoustic signal processing -- 5.5 O / F : COLLABORATION WITH OPTICAL DEVICES -- 5.5.1 O/F : driving a fluid flow by light -- 5.5.2 F/O : optical power controlled by a fluid -- 5.5.3 O/F : optically generated change in a fluid at the signal level -- 5.5.4 F/O: optical signal generated in response to fluid flow or properties -- 5.6 T / F : THERMAL EFFECTS -- 5.6.1 F/T: thermal power produced by fluid flow -- 5.6.2 T/F : driving a fluid flow by heat -- 5.6.3 Generating and using a temperature-dependent signal in a fluid -- 5.6.3.1 Mechanical output -- 5.6.3.2 Electric output -- 5.6.3.3 Fluidic output.
5.7 F / F : FLUIDIC INPUT AS WELL AS OUTPUT -- 5.7.1 Pressure signal derived from measured flow -- 5.7.2 Regenerative circuits -- 5.7.3 Generating a signal carrying information about fluid composition -- 5.7.4 Fluidic power amplifiers -- 5.8 SPECIAL CASES -- 5.8.1 Sensing based on nuclear magnetic resonance -- 5.8.2 Micropyrotechnics -- 5.8.3 Motility of micro-organisms -- 5.8.4 Devices based on properties of special membranes -- 5.8.5 Fluidic pumps employing captive bacteria -- References -- Chapter 6 pplications -- 6.1 SIMPLE SOLUTIONS -- 6.1.1 Controlled injection of liquid droplets -- 6.1.2 Cooling garment and the problem of portable power units -- 6.1.2.1 Reverse Brayton cycle -- 6.1.2.2 Reverse Rankine cycle cooling -- 6.1.2.3 Absorption cooling -- 6.1.2.4 Integral power solutions -- 6.1.2.5 Why not thermoelectric generators? -- 6.1.3 Filling a vessel or keeping a constant liquid level -- 6.1.4 Chromatographs -- 6.1.5 Keeping a (nearly) constant flowrate -- 6.1.6 Simple pressure regulator -- 6.2 TAKING PART IN REVOLUTIONARY CHANGES IN CARS -- 6.2.1 Sensors for intelligent cars -- 6.2.2 Replacing the combustion engine -- 6.2.2.1 Fuel cells -- 6.2.2.2 Liquid fuels and reforming -- 6.3 DISCOVERING NEW MATERIALS AND DRUGS -- 6.3.1. Combinatorial tests -- 6.3.2 Sampling -- 6.3.3 "Guard" flows -- 6.3.4 Low Reynolds numbers: jet pumping by control flow -- 6.3.5 Biological tests -- 6.4 ARTIFICIAL NOSE AND TONGUE -- 6.5 FOOD - AND WASTE -- 6.5.1 Quality monitoring -- 6.5.2 Food processing and meals preparation -- 6.5.2.1 Microfiltration techniques -- 6.5.2.2 Baking and roasting by hybrid synthetic jets -- 6.5.2.3 Producing food -- 6.5.3 Waste liquidation -- 6.6 IDENTIFICATION OF PERSONS -- 6.6.1 Identification based on hand silhouette geometry -- 6.6.2 Fluidic devices for DNA analysis -- 6.7 MEDICAL APPLICATIONS -- 6.7.1 Monitoring of the health state.
6.7.1.1 Flow cytometry -- 6.7.1.2 Glucose sensor -- 6.7.2 Diagnosis and choice of therapy -- 6.7.3 Drug delivery -- 6.7.4 Implanted devices -- 6.7.5 Tissue engineering -- 6.8 AGAINST TERRORISM AND CRIME -- 6.8.1 Portal detector and its sample collectors -- 6.8.2 Fluidic decontamination -- 6.9 INTERFACING THE CENTRAL NERVOUS SYSTEM -- 6.9.1 Therapeutic uses -- 6.9.2 Cyber-animals -- References -- About the Author -- Concluding Remarks -- Index.
Summary: For engineers interested in working in the area of microfluidics, it is critical to have a solid understanding of how fluid flow in microchannels and devices is driven by pressure differences. This cutting-edge resource provides you with that essential knowledge. Offering you comprehensive and up-to-date details on all aspects of the subject, Pressure Driven Microfluidics presents the basic laws of fluid flow, and goes on to describe sophisticated devices like fluidic amplifiers and oscillators. Moreover, you get in-depth coverage of the various principles of signal and power transformations between the fluidic form and the mechanical, electric, thermal, acoustic, optical forms.Additionally, this practical reference provides you with a survey of the wide range of microfluidics application areas, from microchemistry and biomedicine, to waste water treatment and anti-terrorist warfare. Other key discussions include simple components and devices; valves and amplifiers; basic microfluidic circuits; and sensors, transducers, and actuators.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Preface -- Chapter 1 Introduction and Basic Concepts -- 1.1 MEANING AND USE OF MICROFLUIDICS -- 1.1.1 Why fluids? -- 1.1.2 Why devices without moving parts? -- 1.1.3 Why the small size? -- 1.2 BASIC PROPERTIES OF DEVICES -- 1.2.1 Terminals -- 1.2.2 Providing the driving pressure difference -- 1.3 FLOW CHARACTERIZATION PARAMETERS -- 1.3.1 Character of the flow and the Reynolds number Re -- 1.3.2 Scaling down and Re -- 1.3.3 Compressibility and the Mach number Ma -- 1.3.4 Relation to molecular scale: Knudsen number Kn -- 1.3.5 Periodic unsteady flows: Stokes and Strouhal numbers -- 1.4 REGIONS OF OPERATING PARAMETERS IN MICROFLUIDICS -- References -- Chapter 2 Basics of Driving Fluid by Pressure -- 2.1 PRESSURE AND VELOCITY -- 2.2 FLOW RATE AND CHANNEL CROSS-SECTIONS -- 2.2.1 Integral state parameter -- 2.2.2 Implications of manufacturing technology -- 2.3 STATE PARAMETERS -- 2.4 DISSIPATION OF FLUID ENERGY -- 2.4.1 Conversion ek-&gt -- eT -- 2.4.2 Steady-state characteristic and the characterization parameter Q -- 2.4.3 Total dissipation of jet energy -- 2.4.3 Dissipation in separated regions -- 2.4.5 Friction loss mechanism -- 2.4.6 Asymptotic subdynamic regime -- 2.5 STATE PARAMETERS FOR COMPRESSIBLE FLOWS -- 2.6 LAWS OF FLOW BRANCHING -- 2.6.1 Branching factors -- 2.6.2 Comparison with data for biological branchings -- 2.6.3 Optimality criteria dictated by manufacturing technology -- 2.7 UNSTEADY FLOW EFFECTS: INERTANCE -- 2.8 FLUID ACCUMULATION: CAPACITANCE -- 2.8.1 Accumulation mechanisms -- 2.8.2 Gravitational capacitance -- 2.8.3 Fluid compression capacitance -- 2.8.4 Capacitance due to wall elasticity -- 2.8.5 Capillary capacitance -- References -- Chapter 3 Simple Components and Devices -- 3.1 CONNECTING CHANNELS -- 3.2 AREA CONTRACTIONS AND NOZZLES -- 3.2.1 Characterization: search for a nozzle invariant.

3.2.2 Generation of free jets and droplets -- 3.2.3 Generating submerged jets -- 3.3 DIFFUSERS AND COLLECTORS -- 3.4 RESTRICTORS: OBSTACLES TO THE FLOW -- 3.5 DIODES -- 3.5.1 Labyrinth diodes -- 3.5.2 Vortex diodes -- 3.5.3 Reverse flow diverters -- 3.6 REACTORS AND HEAT EXCHANGERS -- 3.7 MIXERS -- 3.8 THREE-TERMINAL JET PUMP TRANSFORMERS -- 3.8.1 Venturi transformers: a nozzle and a diffuser -- 3.8.2 Essential facts about jet pump transformers: two nozzles and a diffuser -- 3.8.3 Common terminal and different connections into the circuit -- 3.9 TOWARD THE SUBDYNAMIC LIMIT -- References -- Chapter 4 Valves and Sophisticated Devices -- 4.1 LOADING CHARACTERISTICS -- 4.1.1 Loading a simple jet-type device -- 4.1.2 Passive flow control valves -- 4.1.3 Load-switching in a passive Coanda-effect valve -- 4.1.4 Passive jet-type pressure regulators -- 4.2 FLUIDIC CONTROL ACTION: ACTIVE VALVES -- 4.2.1 Jet deflection -- 4.2.2 Colliding jets -- 4.2.4 Separation and supercirculation -- 4.2.5 Displacement -- 4.2.6 Fluid "plug" -- 4.3 JET DEFLECTION -- 4.3.1 The deflection mechanism -- 4.3.2 Simplest example of the jet-deflection valve -- 4.3.3 Symmetric proportional control valves -- 4.3.4 Laminar proportional amplifiers -- 4.4 SWITCHING VALVES BASED ON THE COANDA EFFECT -- 4.4.1 Bistable diverter -- 4.4.2 Internal stabilizing feedback -- 4.4.3 Monostable diverters -- 4.4.4 Pressure recovery -- 4.4.5 Matching and importance of the no-spillover state -- 4.5 MULTIELEMENT VALVES AND MODULES -- 4.5.1 Amplified logical operations -- 4.5.2 Bistable vortex valves -- 4.5.3 Valves with "guard" flows -- 4.6 CAPILLARY VALVES -- 4.7 OSCILLATORS -- 4.7.1 The twin valve flip-flop -- 4.7.2 Jet-type valve with feedback loops -- 4.7.3 Feedback loop mechanisms -- 4.7.4 The internal feedback -- 4.7.5 Frequency dividers -- 4.8 FLUIDIC RECTIFIERS -- 4.8.1 The Grätz bridge circuit.

4.8.2 Jet-type rectifiers -- 4.8.3 Traveling wave pump -- References -- Chapter 5 Conversion Devices -- 5.1 CLASSIFICATION AND BASIC CONCEPTS -- 5.1.1 Signals -- 5.1.2 Conversion chains -- 5.1.3 "Incomplete" fluidic systems -- 5.2 M / F CONVERSION TO AND FROM MECHANICAL MOTION -- 5.2.1 Mechanical pumps and valves -- 5.2.1.1 Two basic pump types -- 5.2.1.2 Mechanical valves -- 5.2.2 Sensing position and motion by fluidics -- 5.2.2.1 Restrictor-type sensors -- 5.2.2.2 Jet-type M/F transducers -- 5.2.2.3 Sensors with an integral fluidic amplifier -- 5.2.2.4 Accelerometers -- 5.2.3 F/M actuators -- 5.2.4 F/M sensors and transducers -- 5.3 E / F : CONVERSION TO AND FROM ELECTRIC EFFECTS -- 5.3.1 Electric pumps and valves -- 5.3.1.1 Using ordinary fluids -- 5.3.2 E/F transducing -- 5.3 E / F - CONVERSION TO AND FROM ELECTRIC EFFECTS -- 5.3.1 Electric pumps and valves -- 5.3.1.1 Using ordinary fluids -- 5.3.2 E/F transducing -- 5.3.3 F/E power conversion -- 5.3.4 F/E signal transducers -- 5.3.4.2 Flowrate measurement and monitoring -- 5.4 A / F : COLLABORATION WITH ACOUSTICS -- 5.4.1 Acoustically driven pumps and separators -- 5.4.2 A/F signal conversion -- 5.4.3 F/A fluidically driven acoustic power generation -- 5.4.4 Fluidic and acoustic signal processing -- 5.5 O / F : COLLABORATION WITH OPTICAL DEVICES -- 5.5.1 O/F : driving a fluid flow by light -- 5.5.2 F/O : optical power controlled by a fluid -- 5.5.3 O/F : optically generated change in a fluid at the signal level -- 5.5.4 F/O: optical signal generated in response to fluid flow or properties -- 5.6 T / F : THERMAL EFFECTS -- 5.6.1 F/T: thermal power produced by fluid flow -- 5.6.2 T/F : driving a fluid flow by heat -- 5.6.3 Generating and using a temperature-dependent signal in a fluid -- 5.6.3.1 Mechanical output -- 5.6.3.2 Electric output -- 5.6.3.3 Fluidic output.

5.7 F / F : FLUIDIC INPUT AS WELL AS OUTPUT -- 5.7.1 Pressure signal derived from measured flow -- 5.7.2 Regenerative circuits -- 5.7.3 Generating a signal carrying information about fluid composition -- 5.7.4 Fluidic power amplifiers -- 5.8 SPECIAL CASES -- 5.8.1 Sensing based on nuclear magnetic resonance -- 5.8.2 Micropyrotechnics -- 5.8.3 Motility of micro-organisms -- 5.8.4 Devices based on properties of special membranes -- 5.8.5 Fluidic pumps employing captive bacteria -- References -- Chapter 6 pplications -- 6.1 SIMPLE SOLUTIONS -- 6.1.1 Controlled injection of liquid droplets -- 6.1.2 Cooling garment and the problem of portable power units -- 6.1.2.1 Reverse Brayton cycle -- 6.1.2.2 Reverse Rankine cycle cooling -- 6.1.2.3 Absorption cooling -- 6.1.2.4 Integral power solutions -- 6.1.2.5 Why not thermoelectric generators? -- 6.1.3 Filling a vessel or keeping a constant liquid level -- 6.1.4 Chromatographs -- 6.1.5 Keeping a (nearly) constant flowrate -- 6.1.6 Simple pressure regulator -- 6.2 TAKING PART IN REVOLUTIONARY CHANGES IN CARS -- 6.2.1 Sensors for intelligent cars -- 6.2.2 Replacing the combustion engine -- 6.2.2.1 Fuel cells -- 6.2.2.2 Liquid fuels and reforming -- 6.3 DISCOVERING NEW MATERIALS AND DRUGS -- 6.3.1. Combinatorial tests -- 6.3.2 Sampling -- 6.3.3 "Guard" flows -- 6.3.4 Low Reynolds numbers: jet pumping by control flow -- 6.3.5 Biological tests -- 6.4 ARTIFICIAL NOSE AND TONGUE -- 6.5 FOOD - AND WASTE -- 6.5.1 Quality monitoring -- 6.5.2 Food processing and meals preparation -- 6.5.2.1 Microfiltration techniques -- 6.5.2.2 Baking and roasting by hybrid synthetic jets -- 6.5.2.3 Producing food -- 6.5.3 Waste liquidation -- 6.6 IDENTIFICATION OF PERSONS -- 6.6.1 Identification based on hand silhouette geometry -- 6.6.2 Fluidic devices for DNA analysis -- 6.7 MEDICAL APPLICATIONS -- 6.7.1 Monitoring of the health state.

6.7.1.1 Flow cytometry -- 6.7.1.2 Glucose sensor -- 6.7.2 Diagnosis and choice of therapy -- 6.7.3 Drug delivery -- 6.7.4 Implanted devices -- 6.7.5 Tissue engineering -- 6.8 AGAINST TERRORISM AND CRIME -- 6.8.1 Portal detector and its sample collectors -- 6.8.2 Fluidic decontamination -- 6.9 INTERFACING THE CENTRAL NERVOUS SYSTEM -- 6.9.1 Therapeutic uses -- 6.9.2 Cyber-animals -- References -- About the Author -- Concluding Remarks -- Index.

For engineers interested in working in the area of microfluidics, it is critical to have a solid understanding of how fluid flow in microchannels and devices is driven by pressure differences. This cutting-edge resource provides you with that essential knowledge. Offering you comprehensive and up-to-date details on all aspects of the subject, Pressure Driven Microfluidics presents the basic laws of fluid flow, and goes on to describe sophisticated devices like fluidic amplifiers and oscillators. Moreover, you get in-depth coverage of the various principles of signal and power transformations between the fluidic form and the mechanical, electric, thermal, acoustic, optical forms.Additionally, this practical reference provides you with a survey of the wide range of microfluidics application areas, from microchemistry and biomedicine, to waste water treatment and anti-terrorist warfare. Other key discussions include simple components and devices; valves and amplifiers; basic microfluidic circuits; and sensors, transducers, and actuators.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.