ORPP logo
Image from Google Jackets

CFD Modeling and Optimization of Fuel-Cell Systems.

By: Contributor(s): Material type: TextTextPublisher: New York : Nova Science Publishers, Incorporated, 2008Copyright date: ©2008Edition: 1st edDescription: 1 online resource (106 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781608762972
Subject(s): Genre/Form: Additional physical formats: Print version:: CFD Modeling and Optimization of Fuel-Cell SystemsDDC classification:
  • 621.31/2429015118
LOC classification:
  • TK2931 -- .C46 2008eb
Online resources:
Contents:
Intro -- CFD MODELING AND OPTIMIZATION OF FUEL-CELL SYSTEMS -- NOTICE TO THE READER -- ACKNOWLEDGEMENTS -- CONTENTS -- PREFACE -- NOMENCLATURE -- ABBREVIATIONS -- INTRODUCTION -- BASIC OPERATIONAL PRINCIPLES -- 2.1. FUEL CELL DESCRIPTION -- 2.2. MAXIMUM ELECTROMOTIVE FORCE (EMF) OR OPEN CIRCUIT VOLTAGE (OCV) -- 2.3. CURRENT DENSITY-POWER DENSITY -- 2.4. FUEL-CELL EFFICIENCY -- 2.5. NERNST EQUATION -- 2.6. IRREVERSIBLE PROCESSES UNDER OPERATING CONDITIONS -- 2.6.1. Activation Polarization (ΔVact) -- 2.6.2. Ohmic Losses (ΔVohmic) -- 2.6.3. Concentration Polarization (ΔVconc) -- 2.6.4. Total Losses -- 2.7. ELECTROCHEMICAL REACTION RATES -- 2.8. FUEL CELL OPERATING PARAMETERS -- THE MATHEMATICAL MODEL -- 3.1. THE EQUATIONS -- 3.2. MODEL ASSUMPTIONS -- 3.3. BOUNDARY CONDITIONS-SPECIAL INTERNAL CONDITIONS -- NUMERICAL SOLUTION METHOD -- 4.1. INTRODUCTION -- 4.2. THE SOLUTION METHOD -- 4.3. NUMERICAL SOLUTION -- 4.4. MODEL APPLICATION -- 4.4.1. Fuel Cell Geometry -- 4.4.2. Boundary Conditions -- 4.4.3. Grid-Independency Studies - Computer Requirements -- RESULTS -- 5.1. INTRODUCTION -- 5.2. PART I: Ο2-ENRICHED AIR FLOW -- 5.2.1. Necessity of Using Ο2- Enriched Air Flow -- 5.2.2. Enrichment of Air Flow with Ο2 -- 5.2.3. Fuel- and Oxidant-Gas Utilization Uf, Uox -- 5.2.4. Fuel-Cell Operating Conditions -- 5.2.5. Influence of Oxygen-Enriched Air Flow on Fuel Cell Performance -- 5.2.6. The Influence of Oxygen Enriched Air Flow onFuel-Cell-Stack Power -- 5.2.7. Advantages - Disadvantages of Using Oxygen Enriched Air Current -- 5.2.8. Performance of Fuel Cells Supplied with Pure Hydrogen and Oxygen -- 5.3. PART II: ATMOSPHERIC AIR FLOW RATE -- 5.3.1. Fuel and Oxidant inlet Volumetric Rates, Qf, Qox -- 5.3.2. Fuel and Oxidant Gases -- 5.3.3. Operating Cell Voltage -- 5.3.4. Fuel cell Power -- 5.3.5. Fuel Cell Efficiency.
5.3.6. Influence of Oxidant Gas Inlet Volumetric Rate in Fuel Cell Performance -- 5.3.7. Choice of m, n Coefficients -- CONCLUSION -- APPENDIX -- A.1. ACTIVATION OVERPOTENTIAL -- A.2. MODEL VALIDATION -- A.3. EMPIRICAL EQUATION FOR THE MASS TRANSPORT LOSSES ESTIMATION -- REFERENCES -- INDEX.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- CFD MODELING AND OPTIMIZATION OF FUEL-CELL SYSTEMS -- NOTICE TO THE READER -- ACKNOWLEDGEMENTS -- CONTENTS -- PREFACE -- NOMENCLATURE -- ABBREVIATIONS -- INTRODUCTION -- BASIC OPERATIONAL PRINCIPLES -- 2.1. FUEL CELL DESCRIPTION -- 2.2. MAXIMUM ELECTROMOTIVE FORCE (EMF) OR OPEN CIRCUIT VOLTAGE (OCV) -- 2.3. CURRENT DENSITY-POWER DENSITY -- 2.4. FUEL-CELL EFFICIENCY -- 2.5. NERNST EQUATION -- 2.6. IRREVERSIBLE PROCESSES UNDER OPERATING CONDITIONS -- 2.6.1. Activation Polarization (ΔVact) -- 2.6.2. Ohmic Losses (ΔVohmic) -- 2.6.3. Concentration Polarization (ΔVconc) -- 2.6.4. Total Losses -- 2.7. ELECTROCHEMICAL REACTION RATES -- 2.8. FUEL CELL OPERATING PARAMETERS -- THE MATHEMATICAL MODEL -- 3.1. THE EQUATIONS -- 3.2. MODEL ASSUMPTIONS -- 3.3. BOUNDARY CONDITIONS-SPECIAL INTERNAL CONDITIONS -- NUMERICAL SOLUTION METHOD -- 4.1. INTRODUCTION -- 4.2. THE SOLUTION METHOD -- 4.3. NUMERICAL SOLUTION -- 4.4. MODEL APPLICATION -- 4.4.1. Fuel Cell Geometry -- 4.4.2. Boundary Conditions -- 4.4.3. Grid-Independency Studies - Computer Requirements -- RESULTS -- 5.1. INTRODUCTION -- 5.2. PART I: Ο2-ENRICHED AIR FLOW -- 5.2.1. Necessity of Using Ο2- Enriched Air Flow -- 5.2.2. Enrichment of Air Flow with Ο2 -- 5.2.3. Fuel- and Oxidant-Gas Utilization Uf, Uox -- 5.2.4. Fuel-Cell Operating Conditions -- 5.2.5. Influence of Oxygen-Enriched Air Flow on Fuel Cell Performance -- 5.2.6. The Influence of Oxygen Enriched Air Flow onFuel-Cell-Stack Power -- 5.2.7. Advantages - Disadvantages of Using Oxygen Enriched Air Current -- 5.2.8. Performance of Fuel Cells Supplied with Pure Hydrogen and Oxygen -- 5.3. PART II: ATMOSPHERIC AIR FLOW RATE -- 5.3.1. Fuel and Oxidant inlet Volumetric Rates, Qf, Qox -- 5.3.2. Fuel and Oxidant Gases -- 5.3.3. Operating Cell Voltage -- 5.3.4. Fuel cell Power -- 5.3.5. Fuel Cell Efficiency.

5.3.6. Influence of Oxidant Gas Inlet Volumetric Rate in Fuel Cell Performance -- 5.3.7. Choice of m, n Coefficients -- CONCLUSION -- APPENDIX -- A.1. ACTIVATION OVERPOTENTIAL -- A.2. MODEL VALIDATION -- A.3. EMPIRICAL EQUATION FOR THE MASS TRANSPORT LOSSES ESTIMATION -- REFERENCES -- INDEX.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.