Carbon Nanotubes and Graphene.
Material type:
- text
- computer
- online resource
- 9780080982687
- 620.193
- TA455.C3 -- .C373 2014eb
Cover -- Title page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 - Classification of Carbon -- References -- Chapter 2 - Multidimensional Aspects of Single-Wall Carbon Nanotube Synthesis -- 2.1 - Various synthesis methods for single-wall carbon nanotubes -- 2.2 - Catalysts for the SWCNT growth -- 2.3 - The way to introduce the catalyst on the CVD growth of SWCNTs -- 2.4 - Carbon sources leading to the efficient CVD growth of SWCNTs -- 2.5 - Structural controllability in the CVD synthesis of SWCNTs -- 2.6 - Summary and outlook -- Acknowledgements -- References -- Chapter 3 - Differentiation of Carbon Nanotubes with Different Chirality -- 3.1 - Introduction and brief history of differentiation of single-walled carbon nanotubes (SWCNTs) with different electroni... -- 3.2 - Differentiation of densities of SWCNTs with different chiralities -- 3.2.1 - Typical procedure to sort metallic and semiconducting types of SWCNTs by DGU -- 3.2.2 - Sorting mechanisms in DGU -- 3.2.2.1 - The types of surfactants used for dispersion and separation -- 3.2.2.2 - The type of gradient medium and the temperature -- 3.3 - Differentiation of SWCNTs with different chiralities through size exclusion chromatography or gel filtration -- 3.3.1 - Typical procedure to extract single-chiral state (6, 5) SWCNTs by the gel filtration method -- 3.3.2 - Sorting mechanisms in gel chromatography/filtration -- 3.3.2.1 - Type and concentration of surfactant -- 3.3.2.2 - Type of filler and temperature -- 3.4 - Summary -- References -- Chapter 4 - Preparation of Graphene with Large Area -- 4.1 - Introduction -- 4.2 - Graphene growth on metal substrates by CVD -- 4.2.1 - Process parameters -- 4.2.1.1 - The kinetics of the graphene growth process with respect to the process parameters.
4.2.1.2 - The nucleation of graphene with respect to the process parameters -- 4.2.1.3 - The role of hydrogen in the graphene growth -- 4.2.2 - Substrate material -- 4.2.2.1 - Copper -- 4.2.2.2 - Nickel and other metals -- 4.2.2.3 - Non-metallic substrates -- 4.3 - Toward the large domain size -- 4.4 - Bilayer graphene (BLG) growth -- 4.5 - Graphene transfer -- 4.5.1 - Choice of the protective layer -- 4.5.2 - The effect of target substrates on graphene quality -- 4.5.3 - Direct transfer of graphene onto target substrates -- 4.5.4 - Non-destructive exfoliation transfer process -- 4.6 - Concluding remarks -- References -- Chapter 5 - Optical Properties of Carbon Nanotubes -- 5.1 - Introduction -- 5.2 - Exciton energy calculation -- 5.2.1 - Many-body effect in an exciton -- 5.2.2 - Dark and bright exciton states -- 5.2.3 - Bethe-Salpeter equation -- 5.3 - The calculated exciton energies -- 5.3.1 - The exciton Kataura plot -- 5.4 - Exciton environmental effect -- 5.5 - Exciton effect in Raman spectroscopy -- 5.5.1 - (n,m) assignment from resonance Raman spectra -- 5.5.2 - Exciton-exciton interaction and electronic Raman spectra -- 5.6 - Summary -- Acknowledgements -- References -- Chapter 6 - Phonon Structures and Raman Effect of Carbon Nanotubes and Graphene -- 6.1 - Introduction -- 6.2 - The Raman process with particular emphasis on sp2 carbon phases -- 6.2.1 - Quantum mechanics of Raman scattering -- 6.2.2 - Double resonance Raman scattering -- 6.2.3 - Calculation of scattering cross sections -- 6.2.4 - Raman instrumentation -- 6.3 - Phonons in SWCNTs and graphene -- 6.3.1 - Phonons in graphene -- 6.3.2 - Phonons in SWCNTs -- 6.3.3 - Approximate relations for phonon frequencies -- 6.4 - Raman scattering from SWCNT -- 6.4.1 - The radial breathing mode -- 6.4.2 - Raman scattering from D line and 2D line -- 6.4.3 - Raman scattering from G mode.
6.5 - Raman scattering of SWCNT functionalized by filling -- 6.5.1 - Raman scattering from peapods -- 6.5.2 - Raman scattering from double-walled carbon nanotubes -- 6.5.3 - Raman scattering from tubes with ultrahigh curvature -- 6.6 - Special Raman experiments -- 6.6.1 - Effects of temperature, pressure and atomic substitution -- 6.6.2 - Special Raman lines -- 6.6.3 - Tip-enhanced Raman scattering -- 6.6.4 - Electronic Raman scattering -- 6.6.5 - Orientation-dependent Raman scattering -- 6.6.6 - Raman scattering from semiconductor-metal separated tubes -- 6.7 - Raman scattering from graphene -- 6.7.1 - Graphene and few-layer graphene -- 6.7.2 - Special Raman experiments with graphene: electronic Raman scattering and edge state scattering -- 6.8 - Second-order Raman spectra and combination modes in SWCNTs and graphene -- 6.8.1 - Intermediate frequency modes, M lines, iTOLA line and overtone lines in CNT -- 6.8.2 - Raman scattering from combination modes in graphene -- Acknowledgements -- References -- Chapter 7 - Transport Properties of Carbon Nanotubes and Graphene -- 7.1 - Conduction properties of graphene and carbon nanotubes -- 7.1.1 - Conduction properties of graphene -- 7.1.1.1 - Electrical doping and ambipolar transport in graphene -- 7.1.1.2 - Mobility in graphene -- 7.1.2 - Conduction properties of carbon nanotubes -- 7.2 - Electronic devices based on graphene and carbon nanotubes -- 7.2.1 - Field-effect transistors based on graphene -- 7.2.2 - Field-effect transistors based on carbon nanotubes -- 7.3 - Conclusions -- References -- Chapter 8 - Mechanical Properties of Carbon Nanotubes and Graphene -- 8.1 - Introduction -- 8.2 - Basic concepts -- 8.2.1 - Elastic regime -- 8.2.2 - Beyond the elastic regime -- 8.3 - Computer modelling and experimental approaches -- 8.3.1 - Computational modelling approaches -- 8.3.1.1 - Quantum mechanics.
8.3.1.2 - Atomistic modelling -- 8.3.1.3 - Continuum modelling -- 8.3.2 - Experimental approaches -- 8.4 - Mechanical property data summary -- References -- Chapter 9 - Organometallic Chemistry of Carbon Nanotubes and Graphene -- 9.1 - Introduction -- 9.2 - Reactions of carbon nanotubes and graphene -- 9.2.1 - Destructive hybridization: covalent bond formation involving the creation of sp3-hybridized carbon atoms in the gra... -- 9.2.2 - Constructive hybridization: metal complexation -- 9.3 - Organometallic chemistry of carbon nanotubes and graphene -- 9.3.1 - Reactivity and bonding in organometallic complexes -- 9.3.2 - General approach to synthesis of organometallic complexes -- 9.3.2.1 - Method A -- 9.3.2.2 - Method B -- 9.3.2.3 - Method C -- 9.3.2.4 - Method D -- 9.4 - Organometallic chemistry of carbon nanotubes -- 9.4.1 - Bihapto (η2-)-transition metal complexes of pristine SWCNTs -- 9.4.2 - Mono-hexahapto (η6)-transition metal complexes of SWCNTs via the solution chemistry approach -- 9.4.3 - Bis-hexahapto (η6)-transition metal complexes of SWCNTs via metal vapour synthesis -- 9.4.3.1 - Transport Properties of SWCNT Thin Films: Atomic Contacts and Interconnects via the Formation of Bis-Hexahapto-Me... -- 9.4.4 - Coordination chemistry of oxidized SWCNTs side chains -- 9.5 - Organometallic chemistry of graphene -- 9.5.1 - Comparison of the hexahapto complexation ability of fullerenes and graphene -- 9.5.2 - Synthesis of organometallic complexes of graphene -- 9.5.3 - Characterization of the organometallic complexes of graphene -- 9.5.4 - Decomplexation reactions of organometallic complexes of graphene -- 9.6 - Conclusions and perspectives -- Acknowledgements -- References -- Chapter 10 - Preparation and Properties of Carbon Nanopeapods -- 10.1 - Introduction -- 10.2 - High-yield synthesis of carbon nanopeapods.
10.3 - Packing alignment of the molecules in SWCNTs -- 10.4 - Electronic properties of nanopeapods -- 10.4.1 - C60 encapsulation effects on electronic structures of semiconducting SWCNTs -- 10.4.2 - C60 encapsulation effects on electronic structures of metallic SWCNTs -- 10.4.3 - C70 encapsulation effects on electronic structures of semiconducting SWCNTs -- 10.4.4 - Bandgap modulation in fullerene nanopeapods at nanometer scale -- 10.4.5 - Valence states of encapsulated atoms in metallofullerene nanopeapods -- 10.5 - Phonon properties of nanopeapods -- 10.5.1 - Radial breathing modes (RBMs) -- 10.5.2 - G-band -- 10.6 - Transport properties of nanopeapods -- 10.7 - Nanopeapod as a sample cell at nanometer scale -- 10.8 - Conclusion -- Acknowledgement -- References -- Chapter 11 - Applications of Carbon Nanotubes and Graphene in Spin Electronics -- 11.1 - Spintronics -- 11.1.1 - Tunnelling magnetoresistance (TMR) -- 11.1.2 - Giant magnetoresistance (GMR) -- 11.1.2.1 - Current in Plane (CIP) GMR -- 11.1.2.2 - Current Perpendicular to Plane (CPP) GMR -- 11.1.3 - Tunnelling or spin injection? -- 11.1.4 - Fundamental obstacles for spin injection, spin detection and spin manipulation -- 11.1.4.1 - Conductivity Mismatch -- 11.1.4.2 - Spurious Effects -- 11.1.4.3 - Spin Relaxation -- 11.2 - Nano-carbon as non-magnetic materials for spintronics -- 11.2.1 - Carbon nanotube (CNT) devices -- 11.2.1.1 - Difficulties in CNT-Based SV Devices -- 11.2.1.2 - Pure Spin Current and Its Detection Using Non-Local Geometry -- 11.2.1.3 - Summary for CNT-Based Spintronic Devices -- 11.2.2 - Graphene devices -- 11.2.2.1 - Graphene as a Spin Transporter -- 11.2.2.2 - Graphene as a Tunnel Barrier -- 11.3 - Summary -- References -- Chapter 12 - Biological Application of Carbon Nanotubes and Graphene -- 12.1 - Introduction -- 12.2 - Biological application of CNTs.
12.2.1 - Synthesis of CNTs.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.