Reliability Characterisation of Electrical and Electronic Systems.
Material type:
- text
- computer
- online resource
- 9781782422259
- 621.381
- TK7835 -- .R455 2015eb
Front Cover -- Reliability Characterisation of Electrical and Electronic Systems -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Electronic and Optical Materials -- Foreword -- Chapter 1: Introduction -- 1.1. Introduction -- 1.2. The focus of the book -- 1.2.1. Reliability characterisation -- 1.2.2. Electrical and electronic systems -- 1.2.3. The readers and the contributing authors -- 1.3. Reliability science and engineering fundamentals (Chapters 2-4Chapter 2Chapter 3Chapter 4) -- 1.3.1. Reliability and stupidity -- 1.3.2. Physics-of-failure thinking -- 1.3.3. Acquiring observational evidence -- 1.4. Reliability methods in component and system development (Chapters 5-9Chapter 5Chapter 6Chapter 7Chapter 8Chapter 9) -- 1.4.1. Components and devices -- 1.4.2. Micro- and nanointegrated circuits -- 1.4.3. More complex systems -- 1.5. Reliability modelling and testing in specific applications (Chapters 10 and 11Chapter 10Chapter 11) -- 1.5.1. Application examples -- 1.5.2. Verification techniques -- 1.5.3. Block modelling with ALT techniques -- 1.6. Conclusion -- References -- Chapter 2: Reliability and stupidity -- 2.1. Introduction -- 2.2. Common mistakes in reliability engineering -- 2.2.1. Inadequate integration of reliability engineering with product development -- 2.2.2. Focus on ``probability´´ in conventional definition of reliability engineering -- 2.2.3. Quantification of reliability -- 2.2.4. Ignoring cause and effect relationship in reliability engineering -- 2.2.5. Incorrect understanding of the meaning of MTBF -- 2.2.6. Inadequate failure testing during product development -- 2.2.7. Reliability engineering activities performed at incorrect time during development -- 2.2.8. Reliability engineering activities performed by incorrect personnel -- 2.2.9. Non-value adding reliability engineering activities.
2.2.10. Incorrect viewpoint on cost of reliability -- 2.3. Conclusion -- References -- Chapter 3: Physics-of-failure (PoF) methodology for electronic reliability -- 3.1. Introduction -- 3.2. Reliability -- 3.3. PoF models -- 3.4. PoF reliability assessment -- 3.5. Applications of PoF to ensure reliability -- 3.6. Summary and areas of future interest -- References -- Chapter 4: Modern instruments for characterizing degradation in electrical and electronic equipment -- 4.1. Introduction -- 4.1.1. Modern instruments -- 4.2. Destructive techniques -- 4.2.1. Cross sections -- 4.2.2. Jet etching and depotting components -- 4.2.3. Chemical analysis -- 4.2.3.1. Ion chromatography -- 4.2.3.2. Infrared spectroscopy -- 4.2.3.3. Raman spectroscopy -- 4.2.3.4. Mass spectrometric techniques -- 4.2.3.5. SEM imaging with energy-dispersive X-ray and wavelength-dispersive X-ray analyses -- 4.2.3.6. Focused ion beam sample preparation -- 4.2.3.7. Transmission electron microscopy (TEM) -- 4.3. Nondestructive techniques -- 4.3.1. Visual inspection -- 4.3.2. Optical microscopy -- 4.3.2.1. Stereomicroscopes -- 4.3.2.2. Metallurgical microscopes -- 4.3.2.3. Transmission microscopes -- 4.3.2.4. Combination systems -- 4.3.3. X-ray imaging techniques -- 4.3.4. Infrared thermography -- 4.3.5. X-ray fluorescence analysis -- 4.3.6. Acoustic microscopy -- 4.4. In situ measurement techniques -- 4.4.1. Electrical measurements -- 4.4.1.1. Electrical conductivity/resistivity measurement -- 4.4.1.2. Passive component measurement -- 4.4.2. Measurement of physical characteristics -- 4.4.2.1. Profilometer surface roughness -- 4.4.2.2. Atomic force microscopy -- 4.5. Conclusions -- 4.5.1. Future trends -- 4.5.2. Sources of further information -- References -- Chapter 5: Reliability building of discrete electronic components -- 5.1. Introduction -- 5.2. Reliability building.
5.2.1. Design for reliability -- 5.2.2. Process reliability -- 5.2.3. Screening and burn-in -- 5.3. Failure risks and possible corrective actions -- 5.3.1. Discrete electronic components -- 5.3.2. Capacitors -- 5.3.2.1. Aluminum electrolytic capacitors -- 5.3.2.2. Tantalum capacitors -- 5.3.3. Diodes -- 5.3.3.1. Silicon diodes -- 5.3.3.2. Nonsilicon diodes -- 5.3.4. Transistors -- 5.3.4.1. Silicon transistors -- 5.3.4.2. Nonsilicon transistors -- 5.4. Effect of electrostatic discharge on discrete electronic components -- 5.4.1. Electrostatic discharge (ESD) -- 5.4.2. ESD-induced failures -- 5.4.3. ESD robust systems -- 5.5. Conclusions -- References -- Chapter 6: Reliability of optoelectronics -- 6.1. Introduction -- 6.2. Overview of optoelectronics reliability -- 6.3. Approaches and recent developments -- 6.4. Case study: reliability of buried heterostructure (BH) InP semiconductor lasers -- 6.4.1. Effects of p-metal contact -- 6.4.1.1. p-metallization -- 6.4.1.2. Plasma damage -- 6.4.1.3. p-InGaAs contact layer thickness -- 6.4.2. Effects of BH interfaces -- 6.4.3. Effects of substrate quality -- 6.5. Reliability extrapolation and modeling -- 6.5.1. Sublinear model extrapolation -- 6.5.2. Temperature and current accelerations -- 6.6. Electrostatic discharge (ESD) and electrical overstress (EOS) -- 6.6.1. ESD damage characteristics -- 6.6.2. ESD polarity effect -- 6.6.3. ESD soft and hard degradation behaviors -- 6.6.4. Size effect -- 6.6.5. BH versus RWG lasers -- 6.7. Conclusions -- References -- Chapter 7: Reliability of silicon integrated circuits -- 7.1. Introduction -- 7.2. Reliability characterization approaches -- 7.3. Integrated circuit (IC) wear-out failure mechanisms -- 7.3.1. Transistor degradation -- 7.3.1.1. Time-dependent dielectric breakdown of gate dielectrics -- 7.3.1.2. Bias temperature instabilities.
Negative bias temperature instability -- Positive bias temperature instability -- Impact of BTI on digital circuit reliability -- 7.3.1.3. Hot carrier aging -- 7.3.2. Interconnect degradation -- 7.3.2.1. Electromigration -- 7.3.2.2. Stress voiding -- 7.3.2.3. Time-dependent breakdown of interlevel dielectrics -- 7.3.3. SER in Si circuits -- 7.3.3.1. Mechanisms and technology trends -- 7.3.3.2. Simulation of circuit SER: virtual qualification -- 7.4. Summary and conclusions -- Acknowledgments -- References -- Chapter 8: Reliability of emerging nanodevices -- 8.1. Introduction to emerging nanodevices -- 8.2. Material and architectural evolution of nanodevices -- 8.3. Failure mechanisms in nanodevices -- 8.3.1. Front-end failure mechanisms -- 8.3.2. Back-end failure mechanisms -- 8.3.3. Package-level failure mechanisms -- 8.3.4. Failure mechanisms in memory technology -- 8.4. Reliability challenges: opportunities and issues -- 8.5. Summary and conclusions -- References -- Chapter 9: Design considerations for reliable embedded systems -- 9.1. Introduction -- 9.2. Hardware faults -- 9.2.1. Logic faults -- 9.2.2. Timing faults -- 9.2.3. Trends of hardware faults -- 9.3. Reliable design principles -- 9.3.1. Hardware redundancy -- 9.3.2. Error hardening -- 9.3.3. EDAC codes -- 9.3.4. Re-execution and application checkpointing -- 9.3.5. Industrial practices -- 9.3.6. Design trade-offs -- 9.4. Low-cost reliable design -- 9.4.1. Microarchitectural approaches -- 9.4.2. System-level approaches -- 9.4.2.1. Runtime reliability management -- 9.4.2.2. Design-time reliability optimization -- 9.4.3. Software approaches -- 9.5. Future research directions -- 9.5.1. Cross-layer system adaptation -- 9.5.2. Quality-of-experience-aware design -- 9.5.3. Programming models -- 9.5.4. Reliable design automation -- 9.6. Conclusions -- References.
Chapter 10: Reliability approaches for automotive electronic systems -- 10.1. Introduction -- 10.2. Circuit reliability challenges for the automotive industry -- 10.3. Circuit reliability checking for the automotive industry -- 10.3.1. Voltage-dependent checking -- 10.3.2. Negative voltage checking and reverse current -- 10.3.2.1. Schematic -- 10.3.2.2. Layout -- 10.3.3. ESD and latch-up verification -- 10.3.4. EOS susceptibility -- 10.4. Using advanced electronic design automation (EDA) tools -- 10.4.1. Voltage propagation -- 10.4.2. Circuit recognition -- 10.4.3. Current density and point-to-point checking -- 10.4.4. Topology-aware geometric checking -- 10.4.5. Voltage-dependent DRC -- 10.5. Case studies and examples -- 10.5.1. Case study 1 -- 10.5.2. Case study 2 -- 10.5.3. Case study 3 -- 10.6. Conclusion -- Acknowledgment -- References -- Chapter 11: Reliability modeling and accelerated life testing for solar power generation systems -- 11.1. Introduction -- 11.2. Overview -- 11.2.1. Brief overview of solar power generation systems -- 11.2.2. Overview of the chapter -- 11.3. Challenges -- 11.3.1. Failures -- 11.3.2. Bankability -- 11.3.3. Product testing -- 11.4. Modeling -- 11.5. Accelerated life testing (ALT) -- 11.5.1. Time compression -- 11.5.2. Using three stresses to create a model -- 11.5.3. Using an existing model -- 11.5.3.1. Expected failure mechanisms and lifetime data -- 11.5.3.2. Reliability calculations -- IGBT reliability calculations -- 11.5.4. Modeling reliability and availability -- 11.5.4.1. Vendor data reliability calculation example -- 11.5.5. Using ALT -- 11.6. ALT example: how to craft a thermal cycling ALT plan for SnAgCu (SAC) solder failure mechanism -- 11.6.1. Objective -- 11.6.2. ALT plan summary -- 11.6.3. Background -- 11.6.4. ALT approach -- 11.6.5. Thermal cycling ALT plan details.
11.6.6. Environmental conditions.
This book takes a holistic approach to reliability engineering for electrical and electronic systems by looking at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability for a range of devices. The text describes the reliability behavior of electrical and electronic systems. It takes an empirical scientific approach to reliability engineering to facilitate a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation. After introducing the fundamentals and background to reliability theory, the text moves on to describe the methods of reliability analysis and charactersation across a wide range of applications. Takes a holistic approach to reliability engineering Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.