ORPP logo
Image from Google Jackets

Green Nanomaterials : From Bioinspired Synthesis to Sustainable Manufacturing of Inorganic Nanomaterials.

By: Contributor(s): Material type: TextTextSeries: IOP Ebooks SeriesPublisher: Bristol : Institute of Physics Publishing, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (231 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780750341677
Subject(s): Genre/Form: Additional physical formats: Print version:: Green NanomaterialsDDC classification:
  • 620.1150286
LOC classification:
  • TA418.9.N35 P389 2020
Online resources:
Contents:
Intro -- Preface -- References -- Acknowledgements -- Author biographies -- Siddharth V Patwardhan -- Sarah S Staniland -- Chapter 1 Green chemistry and engineering -- 1.1 Principles of green chemistry and engineering -- 1.1.1 Overview -- 1.1.2 Drivers for green approaches -- 1.1.3 Estimating environmental impact -- 1.2 Ways to improve sustainability -- 1.3 Green chemistry and nanomaterials -- References -- Chapter 2 Nanomaterials: what are they and why do we want them? -- 2.1 Fundamentals of the nanoscale -- 2.2 Tangible and historical examples of nanomaterials -- 2.3 Special properties offered by the nanoscale -- 2.3.1 Optical: surface plasmon resonance -- 2.3.2 Optical: quantum dots fluorescence -- 2.3.3 Electron spin and nanomagnetism -- 2.4 Applications -- 2.4.1 Nanomedicine -- 2.4.2 Nanodevice technologies -- 2.4.3 Consumer products -- 2.5 Nanomaterial biocompatibility and toxicity -- 2.6 Summary: key lessons from nanomaterials, nanoproperties and applications -- Summary of content -- Key lessons -- References -- Chapter 3 Characterisation of nanomaterials -- 3.1 Introduction -- 3.2 Microscopy -- 3.2.1 Optical microscopy -- 3.2.2 Electron microscopy -- 3.2.3 Scanning electron microscopy -- 3.2.4 Transmission electron microscopy -- 3.2.5 Atomic force microscopy -- 3.3 Spectroscopy applied to nanomaterials -- 3.3.1 Mass spectrometry -- 3.3.2 Infra-red spectroscopy -- 3.3.3 X-ray photoelectron spectroscopy -- 3.4 Diffraction and scattering techniques -- 3.4.1 X-ray diffraction (XRD) -- 3.4.2 Dynamic light scattering -- 3.4.3 Small angle scattering -- 3.5 Porosimetry -- 3.6 Summary: key lessons for characterisation of nanomaterials -- References -- Chapter 4 Conventional methods to prepare nanomaterials -- 4.1 Top-down and bottom-up methods -- 4.2 Top-down methods -- 4.3 Bottom-up methods -- 4.4 Nucleation and growth theory.
4.4.1 Homogeneous nucleation -- 4.4.2 Heterogeneous nucleation -- 4.4.3 Growth -- 4.5 Conventional bottom-up methods -- 4.5.1 Vapour-phase method -- 4.5.2 Solution processing -- 4.5.3 Spray conversion -- 4.5.4 Sol-gel method -- 4.6 Emerging bottom-up methods -- 4.6.1 Principles and overview -- 4.6.2 Soft lithography -- 4.6.3 Dip-pen nanolithography -- 4.6.4 Layer-by-layer self-assembly -- 4.6.5 Solution synthesis of nanoparticles -- 4.6.6 Templated synthesis -- 4.7 Summary: key lessons about conventional routes to nanomaterials -- References -- Chapter 5 Green chemistry for nanomaterials -- 5.1 Sustainability of nanomaterials production -- 5.2 Reasons behind unsustainability -- 5.3 Evaluation of sustainability for selected methods -- 5.3.1 E-factors for solution methods -- 5.3.2 How green is soft lithography? -- 5.3.3 Templated synthesis: surely sustainable? -- 5.4 Adopting green chemistry for nanomaterials -- 5.5 Biological and biochemical terminology and methods -- 5.5.1 Molecular biology component -- 5.5.2 Molecular biological techniques -- 5.6 Summary: key lessons about sustainability nanomaterials production -- References -- Chapter 6 Biomineralisation: how Nature makes nanomaterials -- 6.1 Introduction -- 6.2 Properties and function of biomineral types -- 6.2.1 Bio-calcium phosphate (hydroxyapatite): mechanical/structural support, motion, cutting/grinding -- 6.2.2 Bio-calcium carbonate: protection, sensor, buoyancy -- 6.2.3 Bio-silica: mechanical support, transport and protection -- 6.2.4 Bio-magnetite: sensing, cutting/grinding, iron storage -- 6.3 Mineral formation controlling strategies in biomineralisation -- 6.3.1 The universal biomineralisation process -- 6.4 Roles and types of organic biological components required for biomineralisation -- 6.4.1 Roles of organic biological components -- 6.4.2 Types of organic biological components.
6.5 Summary: key lessons from biomineralisation for the green synthesis of nanomaterials -- References -- Chapter 7 Bioinspired 'green' synthesis of nanomaterials -- 7.1 From biological to bioinspired synthesis -- 7.2 Mechanistic understanding -- 7.2.1 Biomineralising biomolecules -- 7.2.2 Abiotic peptides and proteins from biopanning -- 7.3 An illustration of exploiting the knowledge of nano-bio interactions -- 7.4 Additives as the mimics of biomineral forming biomolecules -- 7.4.1 The need for additives -- 7.4.2 The design of additives and custom synthesis -- 7.5 Compartmentalisation, templating and patterning -- 7.5.1 Confinement in a simple protein template -- 7.5.2 Confinement in modified cage protein templates -- 7.5.3 Biomimetic compartmentalisation -- 7.5.4 Localisation and patterning on surfaces -- 7.6 Scalability of bioinspired syntheses -- 7.7 Summary: key lessons about the journey towards bioinspired synthesis -- References -- Chapter 8 Case study 1: magnetite nanoparticles -- 8.1 Magnetite biomineralisation in magnetotactic bacteria -- 8.2 Magnetosome use in applications: advantages and drawbacks -- Advantages -- Disadvantages -- 8.3 Biomolecules and components controlling magnetosome formation -- 8.3.1 Magnetosome biomineralisation protein discovery -- 8.3.2 Bio-components for each step of biomineralisation -- 8.4 Biokleptic use of Mms proteins for magnetite synthesis in vitro -- 8.5 Understanding Mms proteins in vitro -- Iron binding -- Self-assembly -- 8.6 Development and design of additives: emergence of bioinspired magnetite nanoparticle synthesis -- 8.6.1 Development from biomineralisation proteins: MmsF -- 8.6.2 Screening non-biomineralisation proteins: magnetite interacting proteins -- 8.6.3 Biomimetic magnetosomes -- 8.7 Summary: key learning, and the future (towards manufacture) -- References -- Chapter 9 Case study 2: silica.
9.1 Biosilica occurrence and formation -- 9.2 Biomolecules controlling biosilica formation -- 9.3 Learning from biological silica synthesis: in vitro investigation of bioextracts -- 9.4 Emergence of bioinspired synthesis using synthetic 'additives' -- 9.4.1 Which amino acids are important? -- 9.4.2 Would (homo)polypeptides be sufficient to promote silica formation? -- 9.4.3 Peptides from biopanning -- 9.4.4 Do we need peptides or biomolecules? -- 9.4.5 Can smaller molecules provide similar activities? -- 9.5 Benefits of bioinspired synthesis -- 9.6 From lab to market -- 9.7 Summary: key learning, summary and the future -- References.
Summary: An essential title for postgraduates and final-year undergraduates studying advanced materials, sustainable engineering or environmental chemistry, this book provides an understanding of emerging methods for the synthesis of nanomaterials and how they can be translated into new green approaches to manufacturing. Starting with an introduction to the principles of green chemistry and engineering, the text highlights the special properties that nanomaterials possess, their applications, and ways to characterise them.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- References -- Acknowledgements -- Author biographies -- Siddharth V Patwardhan -- Sarah S Staniland -- Chapter 1 Green chemistry and engineering -- 1.1 Principles of green chemistry and engineering -- 1.1.1 Overview -- 1.1.2 Drivers for green approaches -- 1.1.3 Estimating environmental impact -- 1.2 Ways to improve sustainability -- 1.3 Green chemistry and nanomaterials -- References -- Chapter 2 Nanomaterials: what are they and why do we want them? -- 2.1 Fundamentals of the nanoscale -- 2.2 Tangible and historical examples of nanomaterials -- 2.3 Special properties offered by the nanoscale -- 2.3.1 Optical: surface plasmon resonance -- 2.3.2 Optical: quantum dots fluorescence -- 2.3.3 Electron spin and nanomagnetism -- 2.4 Applications -- 2.4.1 Nanomedicine -- 2.4.2 Nanodevice technologies -- 2.4.3 Consumer products -- 2.5 Nanomaterial biocompatibility and toxicity -- 2.6 Summary: key lessons from nanomaterials, nanoproperties and applications -- Summary of content -- Key lessons -- References -- Chapter 3 Characterisation of nanomaterials -- 3.1 Introduction -- 3.2 Microscopy -- 3.2.1 Optical microscopy -- 3.2.2 Electron microscopy -- 3.2.3 Scanning electron microscopy -- 3.2.4 Transmission electron microscopy -- 3.2.5 Atomic force microscopy -- 3.3 Spectroscopy applied to nanomaterials -- 3.3.1 Mass spectrometry -- 3.3.2 Infra-red spectroscopy -- 3.3.3 X-ray photoelectron spectroscopy -- 3.4 Diffraction and scattering techniques -- 3.4.1 X-ray diffraction (XRD) -- 3.4.2 Dynamic light scattering -- 3.4.3 Small angle scattering -- 3.5 Porosimetry -- 3.6 Summary: key lessons for characterisation of nanomaterials -- References -- Chapter 4 Conventional methods to prepare nanomaterials -- 4.1 Top-down and bottom-up methods -- 4.2 Top-down methods -- 4.3 Bottom-up methods -- 4.4 Nucleation and growth theory.

4.4.1 Homogeneous nucleation -- 4.4.2 Heterogeneous nucleation -- 4.4.3 Growth -- 4.5 Conventional bottom-up methods -- 4.5.1 Vapour-phase method -- 4.5.2 Solution processing -- 4.5.3 Spray conversion -- 4.5.4 Sol-gel method -- 4.6 Emerging bottom-up methods -- 4.6.1 Principles and overview -- 4.6.2 Soft lithography -- 4.6.3 Dip-pen nanolithography -- 4.6.4 Layer-by-layer self-assembly -- 4.6.5 Solution synthesis of nanoparticles -- 4.6.6 Templated synthesis -- 4.7 Summary: key lessons about conventional routes to nanomaterials -- References -- Chapter 5 Green chemistry for nanomaterials -- 5.1 Sustainability of nanomaterials production -- 5.2 Reasons behind unsustainability -- 5.3 Evaluation of sustainability for selected methods -- 5.3.1 E-factors for solution methods -- 5.3.2 How green is soft lithography? -- 5.3.3 Templated synthesis: surely sustainable? -- 5.4 Adopting green chemistry for nanomaterials -- 5.5 Biological and biochemical terminology and methods -- 5.5.1 Molecular biology component -- 5.5.2 Molecular biological techniques -- 5.6 Summary: key lessons about sustainability nanomaterials production -- References -- Chapter 6 Biomineralisation: how Nature makes nanomaterials -- 6.1 Introduction -- 6.2 Properties and function of biomineral types -- 6.2.1 Bio-calcium phosphate (hydroxyapatite): mechanical/structural support, motion, cutting/grinding -- 6.2.2 Bio-calcium carbonate: protection, sensor, buoyancy -- 6.2.3 Bio-silica: mechanical support, transport and protection -- 6.2.4 Bio-magnetite: sensing, cutting/grinding, iron storage -- 6.3 Mineral formation controlling strategies in biomineralisation -- 6.3.1 The universal biomineralisation process -- 6.4 Roles and types of organic biological components required for biomineralisation -- 6.4.1 Roles of organic biological components -- 6.4.2 Types of organic biological components.

6.5 Summary: key lessons from biomineralisation for the green synthesis of nanomaterials -- References -- Chapter 7 Bioinspired 'green' synthesis of nanomaterials -- 7.1 From biological to bioinspired synthesis -- 7.2 Mechanistic understanding -- 7.2.1 Biomineralising biomolecules -- 7.2.2 Abiotic peptides and proteins from biopanning -- 7.3 An illustration of exploiting the knowledge of nano-bio interactions -- 7.4 Additives as the mimics of biomineral forming biomolecules -- 7.4.1 The need for additives -- 7.4.2 The design of additives and custom synthesis -- 7.5 Compartmentalisation, templating and patterning -- 7.5.1 Confinement in a simple protein template -- 7.5.2 Confinement in modified cage protein templates -- 7.5.3 Biomimetic compartmentalisation -- 7.5.4 Localisation and patterning on surfaces -- 7.6 Scalability of bioinspired syntheses -- 7.7 Summary: key lessons about the journey towards bioinspired synthesis -- References -- Chapter 8 Case study 1: magnetite nanoparticles -- 8.1 Magnetite biomineralisation in magnetotactic bacteria -- 8.2 Magnetosome use in applications: advantages and drawbacks -- Advantages -- Disadvantages -- 8.3 Biomolecules and components controlling magnetosome formation -- 8.3.1 Magnetosome biomineralisation protein discovery -- 8.3.2 Bio-components for each step of biomineralisation -- 8.4 Biokleptic use of Mms proteins for magnetite synthesis in vitro -- 8.5 Understanding Mms proteins in vitro -- Iron binding -- Self-assembly -- 8.6 Development and design of additives: emergence of bioinspired magnetite nanoparticle synthesis -- 8.6.1 Development from biomineralisation proteins: MmsF -- 8.6.2 Screening non-biomineralisation proteins: magnetite interacting proteins -- 8.6.3 Biomimetic magnetosomes -- 8.7 Summary: key learning, and the future (towards manufacture) -- References -- Chapter 9 Case study 2: silica.

9.1 Biosilica occurrence and formation -- 9.2 Biomolecules controlling biosilica formation -- 9.3 Learning from biological silica synthesis: in vitro investigation of bioextracts -- 9.4 Emergence of bioinspired synthesis using synthetic 'additives' -- 9.4.1 Which amino acids are important? -- 9.4.2 Would (homo)polypeptides be sufficient to promote silica formation? -- 9.4.3 Peptides from biopanning -- 9.4.4 Do we need peptides or biomolecules? -- 9.4.5 Can smaller molecules provide similar activities? -- 9.5 Benefits of bioinspired synthesis -- 9.6 From lab to market -- 9.7 Summary: key learning, summary and the future -- References.

An essential title for postgraduates and final-year undergraduates studying advanced materials, sustainable engineering or environmental chemistry, this book provides an understanding of emerging methods for the synthesis of nanomaterials and how they can be translated into new green approaches to manufacturing. Starting with an introduction to the principles of green chemistry and engineering, the text highlights the special properties that nanomaterials possess, their applications, and ways to characterise them.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.