Hydrogen and Fuel Cells : Emerging Technologies and Applications.
Material type:
- text
- computer
- online resource
- 9780081007136
- 621.31/2429
- TP359.H8 .S746 2018
Front Cover -- Hydrogen and Fuel Cells: Emerging Technologies and Applications -- Copyright -- Contents -- Preface -- Preface to second edition -- Preface to first edition -- Units and conversion factors -- Chapter 1: Introduction -- 1.1. Possible role of fuel cells and hydrogen -- References -- Chapter 2: Hydrogen -- 2.1. Production of hydrogen -- 2.1.1. Steam reforming -- 2.1.2. Partial oxidation, autothermal and dry reforming -- 2.1.3. Water electrolysis: reverse fuel cell operation -- 2.1.4. Gasification and woody biomass conversion -- 2.1.5. Biological hydrogen production -- 2.1.5.1. Photosynthesis -- 2.1.5.2. Bio-hydrogen production pathways -- 2.1.5.3. Hydrogen production by purple bacteria -- 2.1.5.4. Fermentation and other processes in the dark -- 2.1.5.5. Industrial-scale production of bio-hydrogen -- 2.1.6. Photodissociation -- 2.1.7. Direct thermal or catalytic splitting of water -- 2.2. Issues related to scale of production -- 2.2.1. Centralised hydrogen production -- 2.2.2. Distributed hydrogen production -- 2.2.3. Vehicle on-board fuel reforming -- 2.2.3.1. Production of methanol -- 2.2.3.2. Methanol-to-hydrogen conversion -- 2.3. Hydrogen storage options -- 2.3.1. Compressed gas storage -- 2.3.2. Liquid hydrogen storage -- 2.3.3. Hydride storage -- 2.3.3.1. Chemical thermodynamics -- 2.3.3.2. Metal hydrides -- 2.3.3.3. Complex hydrides -- 2.3.3.4. Modelling metal hydrides -- 2.3.4. Cryo-adsorbed gas storage -- 2.3.5. Other chemical storage options -- 2.3.6. Comparing storage options -- 2.4. Hydrogen transmission -- 2.4.1. Container transport -- 2.4.2. Pipeline transport -- 2.5. Hydrogen conversion overview -- 2.5.1. Uses as an energy carrier -- 2.5.2. Uses as an energy storage medium -- 2.5.3. Combustion uses in vehicles -- 2.5.4. Stationary hydrogen and fuel cell uses -- 2.5.5. Fuel cell uses for transportation.
2.5.6. Direct uses -- 2.6. Problems and discussion topics -- References -- Chapter 3: Fuel cells -- 3.1. Basic concepts -- 3.1.1. Electrochemistry and thermodynamics of fuel cells -- 3.1.1.1. Electrochemical device definitions -- 3.1.1.2. Fuel cells -- 3.1.2. Modelling aspects -- 3.1.3. Quantum chemistry approaches -- 3.1.3.1. Hartree-Fock approximation -- 3.1.3.2. Basis sets and molecular orbitals -- 3.1.3.3. Higher interactions and excited states: Møller-Plesset perturbation theory or density function phenomenological ... -- 3.1.4. Application to water splitting or fuel cell performance at a metal surface -- 3.1.5. Flow and diffusion modelling -- 3.1.6. The temperature factor -- 3.2. Molten carbonate fuel cells -- 3.3. Solid oxide fuel cells -- 3.4. Acid and alkaline fuel cells -- 3.5. Proton exchange membrane fuel cells -- 3.5.1. Current-collectors and gas delivery system -- 3.5.2. Gas diffusion layers -- 3.5.3. Membrane layer -- 3.5.4. Catalyst action -- 3.5.5. Overall performance -- 3.5.6. High-temperature and reverse operation -- 3.5.7. Degradation and lifetime -- 3.6. Direct methanol and other nonhydrogen fuel cells -- 3.7. Biofuel cells -- 3.8. Problems and discussion topics -- References -- Chapter 4: Fuel cell systems -- 4.1. Passenger cars -- 4.1.1. Overall system options for passenger cars -- 4.1.2. PEMFC and battery-fuel cell hybrid cars -- 4.1.3. Performance simulation -- 4.2. Other road vehicles -- 4.3. Ships, trains, and airplanes -- 4.4. Power plants and stand-alone systems -- 4.5. Building-integrated systems -- 4.6. Portable and other small-scale systems -- 4.7. Problems and discussion topics -- References -- Chapter 5: Implementation scenarios -- 5.1. Infrastructure requirements -- 5.1.1. Storage infrastructure -- 5.1.2. Transmission infrastructure -- 5.1.3. Local distribution -- 5.1.4. Filling stations.
5.1.5. Building-integrated concepts -- 5.2. Safety and norm issues -- 5.2.1. Safety concerns -- 5.2.2. Safety requirements -- 5.2.3. National and international standards -- 5.3. Scenarios based on fossil energy -- 5.3.1. Scenario techniques and demand modelling -- 5.3.2. Global clean fossil scenario -- 5.3.2.1. Clean fossil technologies -- 5.3.2.2. Fossil resource considerations -- 5.3.2.3. The fossil scenario -- 5.3.2.4. Evaluation of the clean fossil scenario -- 5.4. Scenarios based on nuclear energy -- 5.4.1. History and present concerns -- 5.4.2. Safe nuclear technologies -- 5.4.2.1. Inherently safe designs -- 5.4.2.2. Technical details of energy amplifier -- 5.4.2.3. Nuclear resources assessment -- 5.4.2.4. Safe nuclear scenario construction -- 5.4.2.5. Evaluation of the safe nuclear scenario -- 5.5. Scenarios based on renewable energy -- 5.5.1. Global renewable energy scenarios -- 5.5.2. Detailed national renewable energy scenario -- 5.5.2.1. Danish energy demand in 2050 -- 5.5.2.2. Available renewable resources -- 5.5.2.3. Construction of 2050 scenarios for Denmark -- Centralised scenario -- Decentralised scenario -- 5.5.2.4. Assessment of renewable energy scenarios -- 5.5.3. New regional scenarios -- 5.5.4. The British Isles -- 5.5.4.1. Energy demand of British Island regions -- 5.5.4.2. Potential energy supply for the British Island regions -- 5.5.4.3. 2050 scenario for the British Isles -- 5.6. Problems and discussion topics -- References -- Chapter 6: Social implications -- 6.1. Cost expectations -- 6.1.1. Hydrogen production costs -- 6.1.2. Fuel cell costs -- 6.1.3. Hydrogen storage costs -- 6.1.4. Infrastructure costs -- 6.1.5. System costs -- 6.2. Life-cycle analysis of environmental and social impacts -- 6.2.1. Purpose and methodology of life-cycle analysis -- 6.2.2. Life-cycle analysis of hydrogen production.
6.2.2.1. Conventional production by steam reforming -- 6.2.2.2. Production by electrolysis -- 6.2.2.3. Direct bio-production of hydrogen from cyanobacteria or algae -- Impacts from use of genetically engineered organisms -- 6.2.2.4. Hydrogen from fermentation of biomass -- 6.2.3. Life-cycle analysis of fuel cells -- 6.2.3.1. SOFCs and MCFCs -- 6.2.3.2. PEMFCs -- 6.2.4. Life-cycle comparison of conventional passenger car and passenger car with fuel cells -- 6.2.4.1. Environmental impact analysis -- 6.2.4.2. Social and economic impact analysis -- 6.2.4.3. Overall assessment -- 6.2.5. Life-cycle assessment of other vehicles for transportation -- 6.2.6. Life-cycle assessment of hydrogen storage and infrastructure -- 6.2.7. Life-cycle assessment of hydrogen systems -- 6.3. Uncertainties -- 6.4. Problems and discussion topics -- References -- Chapter 7: Conclusion: A conditional outcome -- 7.1. Opportunities -- 7.2. Obstacles -- 7.3. The competition -- 7.4. The way forward -- 7.4.1. Hydrogen storage in renewable energy systems -- 7.4.2. Fuel cell vehicles -- 7.4.3. Building-integrated fuel cells -- 7.4.4. Fuel cells in portable equipment -- 7.4.5. Fuel cells in centralised power production -- 7.4.6. Efficiency considerations -- 7.5. How much time do we have? -- 7.6 . The end and a beginning -- References -- Index -- Back Cover.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.