On Quaternions and Octonions.
Material type:
- text
- computer
- online resource
- 9781439864180
- 512/.5
- QA196 -- .C66 2003eb
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contetns -- Preface -- I: The Complex Numbers -- 1: Introduction -- 1.1 The Algebra ℝ of Real Numbers -- 1.2 Higher Dimensions -- 1.3 The Orthogonal Groups -- 1.4 The History of Quaternions and Octonions -- 2: Complex Numbers and 2-Dimensional Geometry -- 2.1 Rotations and Reflections -- 2.2 Finite Subgroups of GO2 and SO2 -- 2.3 The Gaussian Integers -- 2.4 The Kleinian Integers -- 2.5 The 2-Dimensional Space Groups -- II: The Quaternions -- 3: Quaternions and 3-Dimensional Groups -- 3.1 The Quaternions and 3-Dimensional Rotations -- 3.2 Some Spherical Geometry -- 3.3 The Enumeration of Rotation Groups -- 3.4 Discussion of the Groups -- 3.5 The Finite Groups of Quaternions -- 3.6 Chiral and Achiral, Diploid and Haploid -- 3.7 The Projective or Elliptic Groups -- 3.8 The ProjectiveGroups Tell Us All -- 3.9 Geometric Description of the Groups -- Appendix: v → v̄qv Is a Simple Rotation -- 4: Quaternions and 4-Dimensional Groups -- 4.1 Introduction -- 4.2 Two 2-to-1Maps -- 4.3 Naming the Groups -- 4.4 Coxeter's Notations for the Polyhedral Groups -- 4.5 Previous Enumerations -- 4.6 A Note on Chirality -- Appendix: Completeness of the Tables -- 5: The Hurwitz Integral Quaternions -- 5.1 The Hurwitz Integral Quaternions -- 5.2 Primes and Unit -- 5.3 Quaternionic Factorization of Ordinary Primes -- 5.4 TheMetacommutation Problem -- 5.5 Factoring the Lipschitz Integers -- III: The Octonions -- 6: The Composition Algebras -- 6.1 TheMultiplication Laws -- 6.2 The Conjugation Laws -- 6.3 The Doubling Laws -- 6.4 Completing Hurwitz's Theorem -- 6.5 Other Properties of the Algebras -- 6.6 The Maps Lx, Rx, and Bx -- 6.7 Coordinates for the Quaternions and Octonions -- 6.8 Symmetries of the Octonions: Diassociativity -- 6.9 The Algebras overOther Fields.
6.10 The 1-, 2-, 4-, and 8-Square Identities -- 6.11 Higher Square Identities: Pfister Theory -- Appendix: What Fixes a Quaternion Subalgebra? -- 7: Moufang Loops -- 7.1 Inverse Loops -- 7.2 Isotopies -- 7.3 Monotopies and Their Companions -- 7.4 Different Forms of the Moufang Laws -- 8: Octonions and 8-Dimensional Geometry -- 8.1 Isotopies and SO8 -- 8.2 Orthogonal Isotopies and the Spin Group -- 8.3 Triality -- 8.4 Seven Rights CanMake a Left -- 8.5 Other Multiplication Theorems -- 8.6 Three 7-Dimensional Groups in an 8-Dimensional One -- 8.7 On Companions -- 9: The Octavian Integers O -- 9.1 Defining Integrality -- 9.2 Toward the Octavian Integers -- 9.3 The E8 Lattice of Korkine, Zolotarev, and Gosset -- 9.4 Division with Remainder, and Ideals -- 9.5 Factorization in O8 -- 9.6 The Number of Prime Factorizations -- 9.7 "Meta-Problems" for Octavian Factorization -- 10: Automorphisms and Subrings of O -- 10.1 The 240 Octavian Units -- 10.2 Two Kinds of Orthogonality -- 10.3 The Automorphism Group of O -- 10.4 The OctavianUnit Rings -- 10.5 Stabilizing the Unit Subrings -- Appendix: Proof of Theorem 5 -- 11: Reading O Mod 2 -- 11.1 Why Read Mod 2? -- 11.2 The E8 Lattice, Mod 2 -- 11.3 What Fixes (λ)? -- 11.4 The Remaining Subrings Modulo 2 -- 12: The Octonion Projective Plane P2 -- 12.1 The Exceptional Lie Groups and Freudenthal's "Magic Square" -- 12.2 The Octonion Projective Plane -- 12.3 Coordinates for P2 -- Bibliography -- Index.
This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.