ORPP logo
Image from Google Jackets

Band Theory and Electronic Properties of Solids.

By: Material type: TextTextSeries: Oxford Master Series in Condensed Matter Physics SeriesPublisher: Oxford : Oxford University Press, Incorporated, 2001Copyright date: ©2001Edition: 1st edDescription: 1 online resource (239 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780191057465
Subject(s): Genre/Form: Additional physical formats: Print version:: Band Theory and Electronic Properties of SolidsDDC classification:
  • 530.4/12
LOC classification:
  • QC176.8.E4 .S564 2012
Online resources:
Contents:
Cover -- Contents -- 1 Metals: the Drude and Sommerfeld models -- 1.1 Introduction -- 1.2 What do we know about metals? -- 1.3 The Drude model -- 1.3.1 Assumptions -- 1.3.2 The relaxation-time approximation -- 1.4 The failure of the Drude model -- 1.4.1 Electronic heat capacity -- 1.4.2 Thermal conductivity and the Wiedemann-Franz ratio -- 1.4.3 Hall effect -- 1.4.4 Summary -- 1.5 The Sommerfeld model -- 1.5.1 The introduction of quantum mechanics -- 1.5.2 The Fermi-Dirac distribution function -- 1.5.3 The electronic density of states -- 1.5.4 The electronic density of states at E ≈ E&lt -- sub&gt -- F&lt -- /sub&gt -- -- 1.5.5 The electronic heat capacity -- 1.6 Successes and failures of the Sommerfeld model -- 2 The quantum mechanics of particles in a periodic potential: Bloch's theorem -- 2.1 Introduction and health warning -- 2.2 Introducing the periodic potential -- 2.3 Born-von Karman boundary conditions -- 2.4 The Schrödinger equation in a periodic potential -- 2.5 Bloch's theorem -- 2.6 Electronic bandstructure -- 3 The nearly-free electron model -- 3.1 Introduction -- 3.2 Vanishing potential -- 3.2.1 Single electron energy state -- 3.2.2 Several degenerate energy levels -- 3.2.3 Two degenerate free-electron levels -- 3.3 Consequences of the nearly-free-electron model -- 3.3.1 The alkali metals -- 3.3.2 Elements with even numbers of valence electrons -- 3.3.3 More complex Fermi surface shapes -- 4 The tight-binding model -- 4.1 Introduction -- 4.2 Band arising from a single electronic level -- 4.2.1 Electronic wavefunctions -- 4.2.2 Simple crystal structure. -- 4.2.3 The potential and Hamiltonian -- 4.3 General points about the formation of tight-binding bands -- 4.3.1 The group IA and IIA metals -- the tight-binding model viewpoint -- 4.3.2 The Group IV elements -- 4.3.3 The transition metals -- 5 Some general points about bandstructure.
5.1 Comparison of tight-binding and nearly-free-electron bandstructure -- 5.2 The importance of k -- 5.2.1 hk is not the momentum -- 5.2.2 Group velocity -- 5.2.3 The effective mass -- 5.2.4 The effective mass and the density of states -- 5.2.5 Summary of the properties of k -- 5.2.6 Scattering in the Bloch approach -- 5.3 Holes -- 5.4 Postscript -- 6 Semiconductors and Insulators -- 6.1 Introduction -- 6.2 Bandstructure of Si and Ge -- 6.2.1 General points -- 6.2.2 Heavy and light holes -- 6.2.3 Optical absorption -- 6.2.4 Constant energy surfaces in the conduction bands of Si and Ge -- 6.3 Bandstructure of the direct-gap III-V and II-VI semiconductors -- 6.3.1 Introduction -- 6.3.2 General points -- 6.3.3 Optical absorption and excitons -- 6.3.4 Excitons -- 6.3.5 Constant energy surfaces in direct-gap III-V semiconductors -- 6.4 Thermal population of bands in semiconductors -- 6.4.1 The law of mass action -- 6.4.2 The motion of the chemical potential -- 6.4.3 Intrinsic carrier density -- 6.4.4 Impurities and extrinsic carriers -- 6.4.5 Extrinsic carrier density -- 6.4.6 Degenerate semiconductors -- 6.4.7 Impurity bands -- 6.4.8 Is it a semiconductor or an insulator? -- 6.4.9 A note on photoconductivity -- 7 Bandstructure engineering -- 7.1 Introduction -- 7.2 Semiconductor alloys -- 7.3 Artificial structures -- 7.3.1 Growth of semiconductor multilayers -- 7.3.2 Substrate and buffer layer -- 7.3.3 Quantum wells -- 7.3.4 Optical properties of quantum wells -- 7.3.5 Use of quantum wells in opto-electronics -- 7.3.6 Superlattices -- 7.3.7 Type I and type II superlattices -- 7.3.8 Heterojunctions and modulation doping -- 7.3.9 The envelope-function approximation -- 7.4 Band engineering using organic molecules -- 7.4.1 Introduction -- 7.4.2 Molecular building blocks -- 7.4.3 Typical Fermi surfaces.
7.4.4 A note on the effective dimensionality of Fermi-surface sections -- 7.5 Layered conducting oxides -- 7.6 The Peierls transition -- 8 Measurement of bandstructure -- 8.1 Introduction -- 8.2 Lorentz force and orbits -- 8.2.1 General considerations -- 8.2.2 The cyclotron frequency -- 8.2.3 Orbits on a Fermi surface -- 8.3 The introduction of quantum mechanics -- 8.3.1 Landau levels -- 8.3.2 Application of Bohr's correspondence principle to arbitrarily-shaped Fermi surfaces in a magnetic field -- 8.3.3 Quantisation of the orbit area -- 8.3.4 The electronic density of states in a magnetic field -- 8.4 Quantum oscillatory phenomena -- 8.4.1 Types of quantum oscillation -- 8.4.2 The de Haas-van Alphen effect -- 8.4.3 Other parameters which can be deduced from quantum oscillations -- 8.4.4 Magnetic breakdown -- 8.5 Cyclotron resonance -- 8.5.1 Cyclotron resonance in metals -- 8.5.2 Cyclotron resonance in semiconductors -- 8.6 Interband magneto-optics in semiconductors -- 8.7 Other techniques -- 8.7.1 Angle-resolved photoelectron spectroscopy (ARPES) -- 8.7.2 Electroreflectance spectroscopy -- 8.8 Some case studies -- 8.8.1 Copper -- 8.8.2 Recent controversy: Sr&lt -- sub&gt -- 2&lt -- /sub&gt -- RuO&lt -- sub&gt -- 4&lt -- /sub&gt -- -- 8.8.3 Studies of the Fermi surface of an organic molecular metal -- 8.9 Quasiparticles: interactions between electrons -- 9 Transport of heat and electricity in metals and semiconductors -- 9.1 A brief digression -- life without scattering would be difficult! -- 9.2 Thermal and electrical conductivity of metals -- 9.2.1 Metals: the 'Kinetic theory' of electron transport -- 9.2.2 What do τ&lt -- sub&gt -- σ&lt -- /sub&gt -- and τ&lt -- sub&gt -- K&lt -- /sub&gt -- represent? -- 9.2.3 Matthiessen's rule -- 9.2.4 Emission and absorption of phonons -- 9.2.5 What is the characteristic energy of the phonons involved?.
9.2.6 Electron-phonon scattering at room temperature -- 9.2.7 Electron-phonon scattering at T ≪ θ&lt -- sub&gt -- D&lt -- /sub&gt -- -- 9.2.8 Departures from the low temperature a oc σ ∝ T&lt -- sup&gt -- -5&lt -- /sup&gt -- dependence -- 9.2.9 Very low temperatures and/or very dirty metals -- 9.2.10 Summary -- 9.2.11 Electron-electron scattering -- 9.3 Electrical conductivity of semiconductors -- 9.3.1 Temperature dependence of the carrier densities -- 9.3.2 The temperature dependence of the mobility -- 9.4 Disordered systems and hopping conduction -- 9.4.1 Thermally-activated hopping -- 9.4.2 Variable range hopping -- 10 Magnetoresistance in three-dimensional systems -- 10.1 Introduction -- 10.2 Hall effect with more than one type of carrier -- 10.2.1 General considerations -- 10.2.2 Hall effect in the presence of electrons and holes -- 10.2.3 A clue about the origins of magnetoresistance -- 10.3 Magnetoresistance in metals -- 10.3.1 The absence of magnetoresistance in the Sommerfeld model of metals -- 10.3.2 The presence of magnetoresistance in real metals -- 10.3.3 The use of magnetoresistance in finding the Fermi-surface shape -- 10.4 The magnetophonon effect -- 11 Magnetoresistance in two-dimensional systems and the quantum Hall effect -- 11.1 Introduction: two-dimensional systems -- 11.2 Two-dimensional Landau-level density of states -- 11.2.1 Resistivity and conductivity tensors for a two-dimensional system -- 11.3 Quantisation of the Hall resistivity -- 11.3.1 Localised and extended states -- 11.3.2 A further refinement-spin splitting -- 11.4 Summary -- 11.5 The fractional quantum Hall effect -- 11.6 More than one subband populated -- 12 Inhomogeneous and hot carrier distributions in semiconductors -- 12.1 Introduction: inhomogeneous carrier distributions -- 12.1.1 The excitation of minority carriers -- 12.1.2 Recombination.
12.1.3 Diffusion and recombination -- 12.2 Drift, diffusion and the Einstein equations -- 12.2.1 Characterisation of minority carriers -- the Shockley-Haynes experiment -- 12.3 Hot carrier effects and ballistic transport -- 12.3.1 Drift velocity saturation and the Gunn effect -- 12.3.2 Avalanching -- 12.3.3 A simple resonant tunnelling structure -- 12.3.4 Ballistic transport and the quantum point contact -- A: Useful terminology in condensed matter physics -- A.1 Introduction -- A.2 Crystal -- A.3 Lattice -- A.4 Basis -- A.5 Physical properties of crystals -- A.6 Unit cell -- A.7 Wigner-Seitz cell -- A.8 Designation of directions -- A.9 Designation of planes -- Miller indices -- A.10 Conventional or primitive? -- A.11 The 14 Bravais lattices -- B: Derivation of density of states in k-space -- B.1 Introduction -- B.1.1 Density of states -- B.1.2 Reading -- C: Derivation of distribution functions -- C.1 Introduction -- C.1.1 Bosons -- C.1.2 Fermions -- C.1.3 The Maxwell-Boltzmann distribution function -- C.1.4 Mean energy and heat capacity of the classical gas -- D: Phonons -- D.1 Introduction -- D.2 A simple model -- D.2.1 Extension to three dimensions -- D.3 The Debye model -- D.3.1 Phonon number -- D.3.2 Summary -- the Debye temperature as a useful energy scale in solids -- D.3.3 A note on the effect of dimensionality -- E: The Bohr model of hydrogen -- E.1 Introduction -- E.2 Hydrogenic impurities -- E.3 Excitons -- F: Experimental considerations in measuring resistivity and Hall effect -- F.1 Introduction -- F.2 The four-wire method -- F.3 Sample geometries -- F.4 The van der Pauw method. -- F.5 Mobility spectrum analysis -- F.6 The resistivity of layered samples -- G: Canonical momentum -- H: Superconductivity -- H.1 Introduction -- H.2 Pairing -- H.3 Pairing and the Meissner effect -- I: List of selected symbols.
J: Solutions and additional hints for selected exercises.
Summary: Band theory is evident all around us and yet is one of the most stringent tests of quantum mechanics. This textbook, one of the first in the new Oxford Master Series in Physics, attempts to reveal in a quantitative and fairly rigorous fashion how band theory leads to the everyday properties of materials. The book is suitable for final-year undergraduate and first-year graduate students in physics and materials science.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Contents -- 1 Metals: the Drude and Sommerfeld models -- 1.1 Introduction -- 1.2 What do we know about metals? -- 1.3 The Drude model -- 1.3.1 Assumptions -- 1.3.2 The relaxation-time approximation -- 1.4 The failure of the Drude model -- 1.4.1 Electronic heat capacity -- 1.4.2 Thermal conductivity and the Wiedemann-Franz ratio -- 1.4.3 Hall effect -- 1.4.4 Summary -- 1.5 The Sommerfeld model -- 1.5.1 The introduction of quantum mechanics -- 1.5.2 The Fermi-Dirac distribution function -- 1.5.3 The electronic density of states -- 1.5.4 The electronic density of states at E ≈ E&lt -- sub&gt -- F&lt -- /sub&gt -- -- 1.5.5 The electronic heat capacity -- 1.6 Successes and failures of the Sommerfeld model -- 2 The quantum mechanics of particles in a periodic potential: Bloch's theorem -- 2.1 Introduction and health warning -- 2.2 Introducing the periodic potential -- 2.3 Born-von Karman boundary conditions -- 2.4 The Schrödinger equation in a periodic potential -- 2.5 Bloch's theorem -- 2.6 Electronic bandstructure -- 3 The nearly-free electron model -- 3.1 Introduction -- 3.2 Vanishing potential -- 3.2.1 Single electron energy state -- 3.2.2 Several degenerate energy levels -- 3.2.3 Two degenerate free-electron levels -- 3.3 Consequences of the nearly-free-electron model -- 3.3.1 The alkali metals -- 3.3.2 Elements with even numbers of valence electrons -- 3.3.3 More complex Fermi surface shapes -- 4 The tight-binding model -- 4.1 Introduction -- 4.2 Band arising from a single electronic level -- 4.2.1 Electronic wavefunctions -- 4.2.2 Simple crystal structure. -- 4.2.3 The potential and Hamiltonian -- 4.3 General points about the formation of tight-binding bands -- 4.3.1 The group IA and IIA metals -- the tight-binding model viewpoint -- 4.3.2 The Group IV elements -- 4.3.3 The transition metals -- 5 Some general points about bandstructure.

5.1 Comparison of tight-binding and nearly-free-electron bandstructure -- 5.2 The importance of k -- 5.2.1 hk is not the momentum -- 5.2.2 Group velocity -- 5.2.3 The effective mass -- 5.2.4 The effective mass and the density of states -- 5.2.5 Summary of the properties of k -- 5.2.6 Scattering in the Bloch approach -- 5.3 Holes -- 5.4 Postscript -- 6 Semiconductors and Insulators -- 6.1 Introduction -- 6.2 Bandstructure of Si and Ge -- 6.2.1 General points -- 6.2.2 Heavy and light holes -- 6.2.3 Optical absorption -- 6.2.4 Constant energy surfaces in the conduction bands of Si and Ge -- 6.3 Bandstructure of the direct-gap III-V and II-VI semiconductors -- 6.3.1 Introduction -- 6.3.2 General points -- 6.3.3 Optical absorption and excitons -- 6.3.4 Excitons -- 6.3.5 Constant energy surfaces in direct-gap III-V semiconductors -- 6.4 Thermal population of bands in semiconductors -- 6.4.1 The law of mass action -- 6.4.2 The motion of the chemical potential -- 6.4.3 Intrinsic carrier density -- 6.4.4 Impurities and extrinsic carriers -- 6.4.5 Extrinsic carrier density -- 6.4.6 Degenerate semiconductors -- 6.4.7 Impurity bands -- 6.4.8 Is it a semiconductor or an insulator? -- 6.4.9 A note on photoconductivity -- 7 Bandstructure engineering -- 7.1 Introduction -- 7.2 Semiconductor alloys -- 7.3 Artificial structures -- 7.3.1 Growth of semiconductor multilayers -- 7.3.2 Substrate and buffer layer -- 7.3.3 Quantum wells -- 7.3.4 Optical properties of quantum wells -- 7.3.5 Use of quantum wells in opto-electronics -- 7.3.6 Superlattices -- 7.3.7 Type I and type II superlattices -- 7.3.8 Heterojunctions and modulation doping -- 7.3.9 The envelope-function approximation -- 7.4 Band engineering using organic molecules -- 7.4.1 Introduction -- 7.4.2 Molecular building blocks -- 7.4.3 Typical Fermi surfaces.

7.4.4 A note on the effective dimensionality of Fermi-surface sections -- 7.5 Layered conducting oxides -- 7.6 The Peierls transition -- 8 Measurement of bandstructure -- 8.1 Introduction -- 8.2 Lorentz force and orbits -- 8.2.1 General considerations -- 8.2.2 The cyclotron frequency -- 8.2.3 Orbits on a Fermi surface -- 8.3 The introduction of quantum mechanics -- 8.3.1 Landau levels -- 8.3.2 Application of Bohr's correspondence principle to arbitrarily-shaped Fermi surfaces in a magnetic field -- 8.3.3 Quantisation of the orbit area -- 8.3.4 The electronic density of states in a magnetic field -- 8.4 Quantum oscillatory phenomena -- 8.4.1 Types of quantum oscillation -- 8.4.2 The de Haas-van Alphen effect -- 8.4.3 Other parameters which can be deduced from quantum oscillations -- 8.4.4 Magnetic breakdown -- 8.5 Cyclotron resonance -- 8.5.1 Cyclotron resonance in metals -- 8.5.2 Cyclotron resonance in semiconductors -- 8.6 Interband magneto-optics in semiconductors -- 8.7 Other techniques -- 8.7.1 Angle-resolved photoelectron spectroscopy (ARPES) -- 8.7.2 Electroreflectance spectroscopy -- 8.8 Some case studies -- 8.8.1 Copper -- 8.8.2 Recent controversy: Sr&lt -- sub&gt -- 2&lt -- /sub&gt -- RuO&lt -- sub&gt -- 4&lt -- /sub&gt -- -- 8.8.3 Studies of the Fermi surface of an organic molecular metal -- 8.9 Quasiparticles: interactions between electrons -- 9 Transport of heat and electricity in metals and semiconductors -- 9.1 A brief digression -- life without scattering would be difficult! -- 9.2 Thermal and electrical conductivity of metals -- 9.2.1 Metals: the 'Kinetic theory' of electron transport -- 9.2.2 What do τ&lt -- sub&gt -- σ&lt -- /sub&gt -- and τ&lt -- sub&gt -- K&lt -- /sub&gt -- represent? -- 9.2.3 Matthiessen's rule -- 9.2.4 Emission and absorption of phonons -- 9.2.5 What is the characteristic energy of the phonons involved?.

9.2.6 Electron-phonon scattering at room temperature -- 9.2.7 Electron-phonon scattering at T ≪ θ&lt -- sub&gt -- D&lt -- /sub&gt -- -- 9.2.8 Departures from the low temperature a oc σ ∝ T&lt -- sup&gt -- -5&lt -- /sup&gt -- dependence -- 9.2.9 Very low temperatures and/or very dirty metals -- 9.2.10 Summary -- 9.2.11 Electron-electron scattering -- 9.3 Electrical conductivity of semiconductors -- 9.3.1 Temperature dependence of the carrier densities -- 9.3.2 The temperature dependence of the mobility -- 9.4 Disordered systems and hopping conduction -- 9.4.1 Thermally-activated hopping -- 9.4.2 Variable range hopping -- 10 Magnetoresistance in three-dimensional systems -- 10.1 Introduction -- 10.2 Hall effect with more than one type of carrier -- 10.2.1 General considerations -- 10.2.2 Hall effect in the presence of electrons and holes -- 10.2.3 A clue about the origins of magnetoresistance -- 10.3 Magnetoresistance in metals -- 10.3.1 The absence of magnetoresistance in the Sommerfeld model of metals -- 10.3.2 The presence of magnetoresistance in real metals -- 10.3.3 The use of magnetoresistance in finding the Fermi-surface shape -- 10.4 The magnetophonon effect -- 11 Magnetoresistance in two-dimensional systems and the quantum Hall effect -- 11.1 Introduction: two-dimensional systems -- 11.2 Two-dimensional Landau-level density of states -- 11.2.1 Resistivity and conductivity tensors for a two-dimensional system -- 11.3 Quantisation of the Hall resistivity -- 11.3.1 Localised and extended states -- 11.3.2 A further refinement-spin splitting -- 11.4 Summary -- 11.5 The fractional quantum Hall effect -- 11.6 More than one subband populated -- 12 Inhomogeneous and hot carrier distributions in semiconductors -- 12.1 Introduction: inhomogeneous carrier distributions -- 12.1.1 The excitation of minority carriers -- 12.1.2 Recombination.

12.1.3 Diffusion and recombination -- 12.2 Drift, diffusion and the Einstein equations -- 12.2.1 Characterisation of minority carriers -- the Shockley-Haynes experiment -- 12.3 Hot carrier effects and ballistic transport -- 12.3.1 Drift velocity saturation and the Gunn effect -- 12.3.2 Avalanching -- 12.3.3 A simple resonant tunnelling structure -- 12.3.4 Ballistic transport and the quantum point contact -- A: Useful terminology in condensed matter physics -- A.1 Introduction -- A.2 Crystal -- A.3 Lattice -- A.4 Basis -- A.5 Physical properties of crystals -- A.6 Unit cell -- A.7 Wigner-Seitz cell -- A.8 Designation of directions -- A.9 Designation of planes -- Miller indices -- A.10 Conventional or primitive? -- A.11 The 14 Bravais lattices -- B: Derivation of density of states in k-space -- B.1 Introduction -- B.1.1 Density of states -- B.1.2 Reading -- C: Derivation of distribution functions -- C.1 Introduction -- C.1.1 Bosons -- C.1.2 Fermions -- C.1.3 The Maxwell-Boltzmann distribution function -- C.1.4 Mean energy and heat capacity of the classical gas -- D: Phonons -- D.1 Introduction -- D.2 A simple model -- D.2.1 Extension to three dimensions -- D.3 The Debye model -- D.3.1 Phonon number -- D.3.2 Summary -- the Debye temperature as a useful energy scale in solids -- D.3.3 A note on the effect of dimensionality -- E: The Bohr model of hydrogen -- E.1 Introduction -- E.2 Hydrogenic impurities -- E.3 Excitons -- F: Experimental considerations in measuring resistivity and Hall effect -- F.1 Introduction -- F.2 The four-wire method -- F.3 Sample geometries -- F.4 The van der Pauw method. -- F.5 Mobility spectrum analysis -- F.6 The resistivity of layered samples -- G: Canonical momentum -- H: Superconductivity -- H.1 Introduction -- H.2 Pairing -- H.3 Pairing and the Meissner effect -- I: List of selected symbols.

J: Solutions and additional hints for selected exercises.

Band theory is evident all around us and yet is one of the most stringent tests of quantum mechanics. This textbook, one of the first in the new Oxford Master Series in Physics, attempts to reveal in a quantitative and fairly rigorous fashion how band theory leads to the everyday properties of materials. The book is suitable for final-year undergraduate and first-year graduate students in physics and materials science.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.