Quantum Mechanics : Fundamentals and Applications to Technology.
Material type:
- text
- computer
- online resource
- 9783527618200
- QC174.12 .S534 1997
QUANTUM MECHANICS Fundamentals and Applications to Technology -- CONTENTS -- PREFACE -- INTRODUCTION -- QUANTUM MECHANICS AND TECHNOLOGY -- Some Technology Needs and Challenges -- GUIDELINES FOR THE INSTRUCTOR -- SOME IMPORTANT REFERENCES -- Historical Development of Quantum Mechanics -- Textbooks -- General -- 1 A JOLT FOR CLASSICAL PHYSICS -- 1.1 INTRODUCTION -- 1.1.1 A Bit of History -- 1.1.2 Some Simple Questions -- 1.2 SOME EXPERIMENTS THAT DEFIED CLASSICAL PHYSICS -- 1.3 A PREVIEW OF THE TRANSITION FROM CLASSICAL TO QUANTUM PHYSICS -- 1.3.1 Newtonian Mechanics -- 1.3.2 Classical Wave Phenomena -- 1.3.3 The Wave-Particle Duality: A Hint in Optics -- 1.4 MODERN CLASSICAL MECHANICS: A BRIEF OVERVIEW -- 1.4.1 The Lagrangian Equations -- 1.4.2 Hamilton Equations of Motion -- 1.4.3 The Poisson Bracket Description -- 1.4.4 The Hamilton-Jacobi Formulation -- 1.5 THE HAMILTON-JACOBI THEORY AND WAVE MECHANICS -- 1.6 CHAPTER SUMMARY -- 2 THE MATHEMATICAL FORMULATION OF QUANTUM MECHANICS -- 2.1 INTRODUCTION -- 2.1.1 What Are We Trying to Do? -- 2.2 THE SCHRÖDINGER EQUATION -- 2.3 THE WAVE AMPLITUDE -- 2.3.1 Normalization of the Wavefunction -- 2.3.2 The Probability Current Density -- 2.3.3 Expectation Values -- 2.4 WAVES, WAVEPACKETS AND UNCERTAINTY -- 2.4.1 Physical Observables and Commutation Relations -- 2.4.2 Properties of a Wavepacket: The Ehrenfest Theorem -- 2.5 HOW DOES ONE SOLVE THE SCHRÖDINGER EQUATION? -- 2.5.1 Time-Independent Hamiltonian Problem -- 2.5.2 Time-Dependent Hamiltonian -- 2.6 SOME MATHEMATICAL TOOLS FOR QUANTUM MECHANICS -- 2.6.1 Boundary Conditions on the Wavefunction -- 2.6.2 Basis Functions and the Eigenvalue Matrix -- 2.6.3 The Dirac δ-function -- 2.6.4 Dirac Notation: Bra and Ket -- 2.6.5 Important Representations in Quantum Mechanics -- 2.6.6 Hilbert Space -- 2.6.7 Hermitian and Unitary Matrices.
2.7 EQUATIONS OF MOTION -- 2.8 CHAPTER SUMMARY -- 2.9 PROBLEMS -- 3 PARTICLES IN SIMPLE POTENTIALS -- 3.1 INTRODUCTION -- 3.2 THE FREE PARTICLE PROBLEM AND DENSITY OF STATES -- 3.2.1 Density of States for a Three-Dimensional System -- 3.2.2 Density of States in Sub-Three-Dimensional Systems -- 3.3 PARTICLE IN A QUANTUM WELL -- 3.3.1 The Square Quantum Well -- 3.3.2 Particle in a Triangular Quantum Well -- 3.3.3 Particle in an Arbitrary Quantum Well -- 3.3.4 Application Example: Confined Levels in Semiconductor Transistors -- 3.4 PARTICLE IN A PERIODIC POTENTIAL: BLOCH THEOREM -- 3.4.1 The Kronig-Penney Model for Bandstructure -- 3.4.2 Significance of the k-Vector -- 3.5 THE HARMONIC OSCILLATOR -- 3.6 THE MATRIX FORMULATION OF THE HARMONIC OSCILLATOR -- 3.7 HARMONIC OSCILLATOR: QUANTUM AND CLASSICAL TREATMENT -- 3.8 CHAPTER SUMMARY -- 3.9 PROBLEMS -- 4 THE TUNNELING PROBLEM -- 4.1 INTRODUCTION -- 4.2 THE GENERAL TUNNELING PROBLEM -- 4.2.1 Approaches to the Tunneling Problem -- 4.3 STATIONARY STATE APPROACH TO TUNNELING -- 4.3.1 Tunneling through a Square Potential Barrier -- 4.3.2 Application Example: Ohmic Contacts -- 4.3.3 Application Example: Field Emission Devices -- 4.3.4 Application Example: Scanning Tunneling Microscopy -- 4.3.5 Application Example: Josephson Junction -- 4.4 TUNNELING THROUGH MULTIPLE BARRIERS: RESONANT TUNNELING -- 4.4.1 Application Example: Resonant Tunneling Diode -- 4.5 TIME-DEPENDENT APPROACH TO TUNNELING -- 4.5.1 Propagation of a Wavepacket -- 4.6 A NUMERICAL APPROACH TO WAVEPACKET EVOLUTION -- 4.7 QUASI-BOUND STATES AND TRANSMISSION RESONANCE WIDTHS -- 4.8 CHAPTER SUMMARY -- 4.9 PROBLEMS -- 5 PARTICLES IN SPHERICALLY SYMMETRIC POTENTIALS -- 5.1 INTRODUCTION -- 5.2 SPHERICALLY SYMMETRIC POTENTIAL: GENERAL SOLUTION -- 5.3 THE ONE-ELECTRON ATOM AND THE HYDROGEN ATOM PROBLEM.
5.3.1 Application Example: Doping of Semiconductors -- 5.3.2 Application Example: Excitons in Semiconductors -- 5.4 FROM THE HYDROGEN ATOM TO THE PERIODIC TABLE: A QUALITATIVE VIEW -- 5.5 PARTICLE IN A THREE-DIMENSIONAL SQUARE WELL -- 5.6 QUASI-BOUND STATES AND TUNNELING IN SPHERICALLY SYMMETRIC POTENTIALS: RADIOACTIVITY -- 5.7 CHAPTER SUMMARY -- 5.8 PROBLEMS -- 6 PHYSICAL SYMMETRIES AND CONSERVATION LAWS -- 6.1 INTRODUCTION -- 6.2 SYMMETRY AND CONSERVATION LAWS -- 6.3 SPATIAL TRANSLATION AND MOMENTUM CONSERVATION -- 6.4 TIME DISPLACEMENT SYMMETRY -- 6.5 ROTATION SYMMETRY AND ANGULAR MOMENTUM -- 6.6 ANGULAR MOMENTUM: EIGENVALUES AND EIGENFUNCTIONS -- 6.7 SPIN ANGULAR MOMENTUM -- 6.8 COMBINATION OF ANGULAR MOMENTUM STATES -- 6.8.1 Clebsch-Gordon or Wigner Coefficients -- 6.8.2 Application Example: Bandedge States in Optical Materials -- 6.9 CHAPTER SUMMARY -- 6.10 PROBLEMS -- 7 IDENTICAL PARTICLES AND SECOND QUANTIZATION -- 7.1 INTRODUCTION -- 7.2 A SIMPLE EXPERIMENT WITH IDENTICAL PARTICLES -- 7.3 THE N-IDENTICAL-PARTICLE STATE -- 7.4 EXCHANGE INTERACTION -- 7.4.1 Application Example: Binding Energy of the H2+ Molecule Ion -- 7.4.2 The Neutral Hydrogen Molecule: Para- and Ortho-Hydrogen -- 7.5 THE SECOND QUANTIZATION -- 7.5.1 A Continuous Elastic System: Second Quantization -- 7.6 QUANTIZATION OF THE ELECTROMAGNETIC FIELD -- 7.6.1 The Classical Electromagnetic FieId -- 7.6.2 Second Quantization of the Radiation Field -- 7.7 QUANTIZATION OF LAWICE VIBRATIONS: PHONONS -- 7.8 PLASMONS, MAGNONS AND POLARONS -- 7.8.1 Collective Electron Vibrations: Plasmons -- 7.8.2 Spin Waves: Magnons -- 7.8.3 Electron-Lattice Polarization Excitation: Polarons -- 7.9 QUANTIZATION OF THE SCHRÖDINGER WAVE EQUATION FOR ELECTRONS -- 7.10 CLASSICAL AND QUANTUM STATISTICS -- 7.10.1 Application Example: Metals, Insulators and Semiconductors.
7.10.2 Application Example: Normal and Superconducting States -- 7.10.3 Ordinary and Supeffluid Liquid Helium -- 7.11 CHAPTER SUMMAFLY -- 7.12 PROBLEMS -- 8 APPROXIMATION METHODS: TIME-INDEPENDENT PROBLEMS -- 8.1 INTRODUCTION -- 8.2 STATIONARY PERTURBATION THEORY -- 8.2.1 Non-degenerate Case -- 8.2.2 Degenerate Case -- 8.3 SOME APPLICATIONS OF PERTURBATION THEORY -- 8.3.1 Band Theory and Effective Masses -- 8.3.2 Van der Waals Interactions -- 8.4 VARIATIONAL METHOD -- 8.4.1 Application Example: Exciton in Quantum Wells -- 8.5 THE WKB APPROXIMATION -- 8.5.1 Application to the Tunneling Problem -- 8.5.2 Application to the Quantization Rules -- 8.6 RESONANT COUPLING IN DOUBLE WELLS -- 8.6.1 Application Examples: Ammonia Molecules and Organic Dyes -- 8.6.2 Application Example: Atomic Clock -- 8.7 CHAPTER SUMMARY -- 8.8 PROBLEMS -- 9 TIME-DEPENDENT PROBLEMS: APPROXIMATION METHODS -- 9.1 INTRODUCTION -- 9.2 TIME-DEPENDENT PERTURBATION THEORY -- 9.2.1 Harmonic Perturbation -- 9.2.2 Transition Probability for Continuous Spectra -- 9.2.3 Higher Order Perturbation Theory -- 9.3 APPLICATION EXAMPLE: ELECTRON-PHOTON INTERACTION -- 9.3.1 Interband Transitions in Bulk Semiconductors -- 9.3.2 Interband Transitions in Quantum Wells -- 9.4 APPLICATION EXAMPLE: ELECTRON-PHONON SCATTERING -- 9.5 APPLICATION EXAMPLE: INDIRECT INTERBAND TRANSITIONS -- 9.6 APPLICATION EXAMPLE: CHARGE INJECTION AND RADIATIVE RECOMBINATION -- 9.6.1 Phosphors and Fluorescence -- 9.7 SLOWLY VARYING HAMILTONIAN: ADIABATIC APPROXIMATION -- 9.7.1 Adiabatic Approximation and Electron-Phonon Interactions -- 9.8 SUDDEN APPROXIMATION -- 9.9 CHAPTER SUMMARY -- 9.10 PROBLEMS -- 10 COLLISIONS AND SCATTERING -- 10.1 INTRODUCTION -- 10.2 TWO-PARTICLE COLLISIONS: CENTER OF MASS AND LABORATORY COORDINATE DESCRIPTION -- 10.2.1 Scattering Cross Section.
10.2.2 Scattering Angles in Laboratory and Center-of-Mass Systems -- 10.3 SCATTERING AS A STATIONARY STATE PROBLEM -- 10.3.1 An Integral Equation for Scattering -- 10.3.2 Microscopic Reversibility and Optical Theorem -- 10.4 THE BORN APPROXIMATION -- 10.4.1 Validity of the Born Approximation -- 10.5 PARTIAL WAVE ANALYSIS -- 10.5.1 Calculation of the Phase Shifts -- 10.6 APPLICATION EXAMPLE: SCREENED COULOMBIC POTENTIAL SCATTERING -- 10.6.1 Scattering Rate and Macroscopic Transport Properties -- 10.6.2 Ionized Impurity Limited Mobility -- 10.7 APPLICATION EXAMPLE: ALLOY SCATTERING -- 10.8 APPLICATION EXAMPLE: INTERFACE ROUGHNESS SCATTERING -- 10.9 APPLICATION EXAMPLE: CARRIER-CARRIER SCATTERING -- 10.9.1 Electron-Hole Scattering -- 10.9.2 Electron-Electron Scattering -- 10.9.3 Auger Processes and Impact Ionization -- 10.10 CHAPTER SUMMARY -- 10.11 PROBLEMS -- 11 MAGNETIC EFFECTS -- 11.1 INTRODUCTION -- 11.2 CHARGED PARTICLES IN A MAGNETIC FIELD: GENERAL HAMILTONIAN -- 11.3 FREE ELECTRONS IN A MAGNETIC FIELD -- 11.4 THE AHARONOV-BOHM EFFECT -- 11.5 APPLICATION EXAMPLE : SUPERCONDUCTING DEVICES -- 11.6 THE QUANTUM HALL EFFECT -- 11.7 THE ZEEMAN EFFECT -- 11.8 SPIN-ORBIT COUPLING -- 11.9 DIAMAGNETIC AND PARAMAGNETIC EFECTS -- 11.9.1 Diamagnetic Effect -- 11.9.2 Paramagnetic Effect -- 11.9.3 Paramagnetism in the Conduction Electrons in Metals -- 11 9 4 Application Example: Cooling by Demagnetization -- 11.10 EXCHANGE INTERACTION: FERROMAGNETISM AND ANTIFERROMAGNETISM -- 11.10.1 Exchange Interaction and Ferromagnetism -- 11.10.2 Antiferromagnetic Ordering -- 11.10.3 Application Example: Magnetic Recording -- 11.11 MAGNETIC RESONANCE EFFECTS -- 11.11.1 Nuclear Magnetic Resonance -- 11.12 CHAPTER SUMMARY -- 11.13 PROBLEMS -- APPENDIX -- A MODERN CLASSICAL PHYSICS: A REVIEW -- A.1 LAGRANGIAN EQUATIONS -- A.2 HAMILTON EQUATIONS OF MOTION.
A.3 THE HAMILTON-JACOBI FORMULATION.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.