ORPP logo
Image from Google Jackets

Bioenergy for Power Generation, Transportation and Climate Change Mitigation.

By: Material type: TextTextSeries: IOP Series in Renewable and Sustainable Power SeriesPublisher: Bristol : Institute of Physics Publishing, 2023Copyright date: ©2023Edition: 1st edDescription: 1 online resource (269 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780750346146
Subject(s): Genre/Form: Additional physical formats: Print version:: Bioenergy for Power Generation, Transportation and Climate Change MitigationDDC classification:
  • 512.4
LOC classification:
  • QA252 .S564 2023
Online resources:
Contents:
Intro -- Preface -- Acknowledgements -- Author biography -- Anirudh Singh -- Chapter 1 Renewable energy and biomass -- 1.1 Introduction -- 1.2 The energy use sectors -- 1.3 Energy flow-from primary to end-use energy -- 1.4 Global primary energy and total final energy consumption -- 1.5 Share of renewable energy in the global final energy consumption -- 1.6 Share of renewable energy in global electrical power generation -- 1.7 Global share of biomass energy -- Exercises -- References -- Chapter 2 Introduction to solid biomass-properties and use -- 2.1 Introduction -- 2.2 Energy in biomass -- 2.2.1 Obtaining energy from biomass -- 2.2.2 Where does the energy in biomass reside? -- 2.2.3 Biomass as an energy source -- 2.3 Forms of solid biomass feedstock -- 2.3.1 Dedicated energy crops -- 2.3.2 Forestry and industrial residues -- 2.3.3 Municipal solid waste -- 2.3.4 Animal waste -- 2.3.5 Sewage -- 2.4 Energy uses of solid biomass -- 2.4.1 Case study: biomass energy use in the USA -- 2.5 The important properties of woody biomass -- 2.5.1 Moisture content -- 2.5.2 Energy content -- 2.6 Energy-moisture relations -- 2.7 Density-moisture relations -- 2.7.1 The density of wood -- 2.7.2 Density-moisture curves -- 2.8 Pre-treatment and densification of biomass -- 2.8.1 The need for densification -- 2.8.2 Pre-treatment of biomass -- 2.8.3 Densification techniques -- Exercises, questions and projects -- Exercises -- Questions -- Projects -- References -- Chapter 3 Thermal and thermochemical conversion of solid biomass -- 3.1 Introduction -- 3.2 Pathways for biomass conversion -- 3.2.1 Overview of biomass conversion processes -- 3.2.2 Thermochemical processes -- 3.3 Combustion -- 3.3.1 Nature of combustion -- 3.3.2 Combustion of solid biomass -- 3.3.3 The products of combustion -- 3.4 Pyrolysis -- 3.4.1 Introduction to pyrolysis -- 3.4.2 The pyrolysis process.
3.4.3 Types of pyrolysis -- 3.4.4 Products of pyrolysis -- 3.4.5 Pyrolysis reactors -- 3.5 Gasification -- 3.5.1 What is gasification? -- 3.5.2 Overview of the gasification process -- 3.5.3 The chemistry of gasification -- Drying -- Pyrolysis -- Combustion -- 3.5.4 Uses of syngas -- Gasification -- 3.5.5 Gasifiers -- 3.6 Summary of thermochemical processes and products -- Exercises, questions and quizzes -- Exercises -- Questions -- Research questions (RQs) -- Quizzes -- References -- Chapter 4 Chemical, biochemical and electrochemical conversion of biomass -- 4.1 Introduction -- 4.2 Chemical conversion of biomass -- 4.2.1 Transesterification and biodiesel -- 4.2.2 Hydro-treated vegetable oils as fuels for transportation -- 4.2.3 Synthetic fuels from syngas-the FTS process -- 4.3 Biochemical conversion of biomass through respiration -- 4.3.1 Cellular metabolism -- 4.3.2 Respiration and ATP -- 4.3.3 Anaerobic respiration and fermentation -- 4.4 Anaerobic digestion and methane fermentation -- 4.4.1 Introduction -- 4.4.2 Methane fermentation pathways -- 4.5 Electrochemical conversion of biofuels -- 4.5.1 Introduction-thermal vs electrochemical conversion of chemical energy -- 4.5.2 The importance of fuel cells -- 4.5.3 Blue hydrogen and hydrogen fuel cells -- Exercises and questions -- Exercises -- Questions -- References -- Chapter 5 The thermodynamics of heat engines -- 5.1 Introduction -- 5.2 Heat engine-basic concepts -- 5.3 Basic concepts of thermodynamics -- 5.3.1 System -- 5.3.2 State variables -- 5.3.3 State diagrams -- 5.3.4 Processes and paths -- 5.3.5 First law of thermodynamics -- 5.3.6 Cyclic processes -- 5.4 Principle of operation of the heat engine -- 5.4.1 New form of the first law -- 5.4.2 The second law of thermodynamics -- 5.4.3 Thermal efficiency -- 5.4.4 Carnot efficiency -- 5.5 Heat engine power cycles.
5.5.1 Closed and open cycles -- 5.6 Types of heat engines -- 5.6.1 External and internal combustion engines -- 5.6.2 Turbines and piston engines -- 5.7 The Rankine cycle and the steam turbine -- 5.7.1 The realistic steam turbine with super-heating -- 5.7.2 Improving design with reheating -- 5.8 The Brayton cycle and the gas turbine -- Exercises, questions and quizzes -- Exercises -- Questions -- Quiz -- References -- Chapter 6 Bioenergy-based power generation technology -- 6.1 Introduction -- 6.2 Principles of operation of thermal power plants -- 6.2.1 Generic design of thermal power plants -- 6.3 Types of thermal power plants -- 6.3.1 Characteristics of thermal power plants -- 6.3.2 Condensing and CHP power plants -- 6.3.3 A typical condensing coal-fired power plant -- 6.4 Combined cycle power plants -- 6.4.1 Multi-stage power plants -- 6.4.2 Integrated gasification combined cycle power plant (IGCCPP) -- 6.5 Bioenergy-fired thermal power plants in industrial application -- 6.5.1 Bagasse-fired power plants in the sugar industry -- 6.5.2 Solid biomass-fired power plants -- 6.5.3 Pyrolysis power plants -- 6.5.4 Biogas-fired power plants -- Exercises and questions -- Exercises -- Questions -- References -- Chapter 7 Electrochemical conversion and storage of energy -- 7.1 Introduction -- 7.1.1 What are electrolysers, fuel cells and batteries? -- 7.1.2 Introducing the electrochemical cell -- 7.1.3 How are electrolysers, fuel cells and batteries related? -- 7.2 Types of fuel cells -- 7.2.1 Introduction -- 7.2.2 Fuel cell types -- 7.2.3 Summary of essential properties of fuel cells -- 7.3 Types of batteries -- 7.3.1 Primary batteries -- 7.3.2 Secondary (rechargeable) batteries -- 7.4 Battery research and development -- Exercises and questions -- Exercises -- Questions -- References -- Chapter 8 Introduction to liquid biofuels -- 8.1 Introduction.
8.2 Types of biofuels -- 8.2.1 What are biofuels? -- 8.2.2 What are the generations of biofuels? -- 8.2.3 Issues with first generation biofuels -- 8.2.4 Biofuel blends -- 8.3 Global production of biofuels -- 8.4 Engine fuel properties and standards -- 8.4.1 Fuel properties -- Octane number -- Cetane number -- Summary -- 8.4.2 Gasoline and diesel engine fuels -- 8.4.3 Fuel standards and legislations -- 8.4.4 Biofuel standards -- 8.4.5 Fuel standards and legislations-the Australian case study -- Exercises, questions and activities -- References -- Chapter 9 Bioethanol and biobutanol -- 9.1 Introduction -- 9.2 Bioethanol -- 9.2.1 Fuel properties of ethanol -- 9.2.2 Industrial production of bioethanol -- 9.2.3 Metabolic pathways for bioethanol -- 9.2.4 Issues with bioethanol fuel -- 9.2.5 Future biofuels through metabolic engineering -- 9.3 Biobutanol -- 9.3.1 Fuel properties of butanol -- 9.3.2 Industrial production of biobutanol -- 9.3.3 Butanol fermentation through the ABE process -- 9.3.4 Improving yield through metabolic engineering -- Exercises and questions -- Exercises -- Questions -- References -- Chapter 10 Biodiesel, biogas and biomethane -- 10.1 Introduction -- 10.2 Biodiesel -- 10.2.1 Introduction -- 10.2.2 Biodiesel as a fuel -- 10.2.3 Fuel properties of biodiesel -- 10.2.4 Industrial production of biodiesel -- 10.2.5 Issues with biodiesel -- 10.3 Biogas and biomethane -- 10.3.1 Biogas -- 10.3.2 Biomethane or renewable natural gas (RNG) -- 10.3.3 Future supply outlook for biogas and biomethane -- Exercises and questions -- References -- Chapter 11 Emerging fuels for transport and power -- 11.1 Introduction -- 11.2 HVO-a better biofuel for diesel engines -- 11.2.1 Production of HVO -- 11.3 Syngas-a gas for many applications -- 11.3.1 Uses of syngas -- 11.4 The FTS process-synthetic fuels for conventional engines -- History -- Nomenclature.
The stages of the FTS process -- 11.5 Pyrolysis oil-new fuel for sea transport and power generation -- 11.6 Hydrogen-green fuel for EVs and storage -- 11.6.1 Hydrogen production -- 11.6.2 Hydrogen as a green fuel -- 11.6.3 Use of hydrogen-the hydrogen economy -- What is zero-emissions hydrogen? -- Exercises and questions -- Exercises -- Questions and research questions -- References -- Chapter 12 Drivers and threats to global renewable energy production -- 12.1 Introduction -- 12.2 Who are the stakeholders in global energy? -- 12.3 Energy and global conflicts -- 12.4 The role of fossil fuel subsidies -- 12.5 New drivers for global RE production -- 12.5.1 Climate change -- 12.5.2 Energy access for all -- Exercises and questions -- References -- Chapter 13 Climate change and future energy technology -- 13.1 Introduction -- 13.2 The net zero by 2050 ultimatum from the UNFCCC -- 13.2.1 The Paris Agreement and its goals -- 13.2.2 The IPCC Special Report on 1.5 °C -- 13.2.3 High Level Dialogue on Energy (HLDE) -- 13.2.4 The Emissions Gap Report 2021 -- 13.3 The science behind climate change -- 13.3.1 Global warming -- 13.3.2 Estimating emissions -- 13.4 COP26 and the global energy transition -- 13.4.1 Goals of COP26 -- 13.4.2 New tools and opportunities for achieving net zero -- 13.5 The energy transition-an Australian case study -- 13.5.1 Australia's net zero plan -- 13.5.2 The role of Australian universities-ANU's grand challenge -- 13.5.3 Summary remarks -- 13.6 COP27 -- Exercises and questions -- Exercises -- Questions and research questions -- References -- Chapter 14 Energy, pandemics and an integrated global development plan -- 14.1 Introduction -- 14.2 Global poverty, the MDGs and the SDGs -- 14.2.1 Poverty and the MDGs -- 14.2.2 Energy access and the SDGs -- History and motivation for the SDGs -- The indicators of sustainable development.
14.3 Energy and economic well-being.
Summary: This book is a reference text for graduate researchers, climate scientists, academics and policy-makers. It describes the science, technology and policy behind the production and use of bioenergy for power generation and transportation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Acknowledgements -- Author biography -- Anirudh Singh -- Chapter 1 Renewable energy and biomass -- 1.1 Introduction -- 1.2 The energy use sectors -- 1.3 Energy flow-from primary to end-use energy -- 1.4 Global primary energy and total final energy consumption -- 1.5 Share of renewable energy in the global final energy consumption -- 1.6 Share of renewable energy in global electrical power generation -- 1.7 Global share of biomass energy -- Exercises -- References -- Chapter 2 Introduction to solid biomass-properties and use -- 2.1 Introduction -- 2.2 Energy in biomass -- 2.2.1 Obtaining energy from biomass -- 2.2.2 Where does the energy in biomass reside? -- 2.2.3 Biomass as an energy source -- 2.3 Forms of solid biomass feedstock -- 2.3.1 Dedicated energy crops -- 2.3.2 Forestry and industrial residues -- 2.3.3 Municipal solid waste -- 2.3.4 Animal waste -- 2.3.5 Sewage -- 2.4 Energy uses of solid biomass -- 2.4.1 Case study: biomass energy use in the USA -- 2.5 The important properties of woody biomass -- 2.5.1 Moisture content -- 2.5.2 Energy content -- 2.6 Energy-moisture relations -- 2.7 Density-moisture relations -- 2.7.1 The density of wood -- 2.7.2 Density-moisture curves -- 2.8 Pre-treatment and densification of biomass -- 2.8.1 The need for densification -- 2.8.2 Pre-treatment of biomass -- 2.8.3 Densification techniques -- Exercises, questions and projects -- Exercises -- Questions -- Projects -- References -- Chapter 3 Thermal and thermochemical conversion of solid biomass -- 3.1 Introduction -- 3.2 Pathways for biomass conversion -- 3.2.1 Overview of biomass conversion processes -- 3.2.2 Thermochemical processes -- 3.3 Combustion -- 3.3.1 Nature of combustion -- 3.3.2 Combustion of solid biomass -- 3.3.3 The products of combustion -- 3.4 Pyrolysis -- 3.4.1 Introduction to pyrolysis -- 3.4.2 The pyrolysis process.

3.4.3 Types of pyrolysis -- 3.4.4 Products of pyrolysis -- 3.4.5 Pyrolysis reactors -- 3.5 Gasification -- 3.5.1 What is gasification? -- 3.5.2 Overview of the gasification process -- 3.5.3 The chemistry of gasification -- Drying -- Pyrolysis -- Combustion -- 3.5.4 Uses of syngas -- Gasification -- 3.5.5 Gasifiers -- 3.6 Summary of thermochemical processes and products -- Exercises, questions and quizzes -- Exercises -- Questions -- Research questions (RQs) -- Quizzes -- References -- Chapter 4 Chemical, biochemical and electrochemical conversion of biomass -- 4.1 Introduction -- 4.2 Chemical conversion of biomass -- 4.2.1 Transesterification and biodiesel -- 4.2.2 Hydro-treated vegetable oils as fuels for transportation -- 4.2.3 Synthetic fuels from syngas-the FTS process -- 4.3 Biochemical conversion of biomass through respiration -- 4.3.1 Cellular metabolism -- 4.3.2 Respiration and ATP -- 4.3.3 Anaerobic respiration and fermentation -- 4.4 Anaerobic digestion and methane fermentation -- 4.4.1 Introduction -- 4.4.2 Methane fermentation pathways -- 4.5 Electrochemical conversion of biofuels -- 4.5.1 Introduction-thermal vs electrochemical conversion of chemical energy -- 4.5.2 The importance of fuel cells -- 4.5.3 Blue hydrogen and hydrogen fuel cells -- Exercises and questions -- Exercises -- Questions -- References -- Chapter 5 The thermodynamics of heat engines -- 5.1 Introduction -- 5.2 Heat engine-basic concepts -- 5.3 Basic concepts of thermodynamics -- 5.3.1 System -- 5.3.2 State variables -- 5.3.3 State diagrams -- 5.3.4 Processes and paths -- 5.3.5 First law of thermodynamics -- 5.3.6 Cyclic processes -- 5.4 Principle of operation of the heat engine -- 5.4.1 New form of the first law -- 5.4.2 The second law of thermodynamics -- 5.4.3 Thermal efficiency -- 5.4.4 Carnot efficiency -- 5.5 Heat engine power cycles.

5.5.1 Closed and open cycles -- 5.6 Types of heat engines -- 5.6.1 External and internal combustion engines -- 5.6.2 Turbines and piston engines -- 5.7 The Rankine cycle and the steam turbine -- 5.7.1 The realistic steam turbine with super-heating -- 5.7.2 Improving design with reheating -- 5.8 The Brayton cycle and the gas turbine -- Exercises, questions and quizzes -- Exercises -- Questions -- Quiz -- References -- Chapter 6 Bioenergy-based power generation technology -- 6.1 Introduction -- 6.2 Principles of operation of thermal power plants -- 6.2.1 Generic design of thermal power plants -- 6.3 Types of thermal power plants -- 6.3.1 Characteristics of thermal power plants -- 6.3.2 Condensing and CHP power plants -- 6.3.3 A typical condensing coal-fired power plant -- 6.4 Combined cycle power plants -- 6.4.1 Multi-stage power plants -- 6.4.2 Integrated gasification combined cycle power plant (IGCCPP) -- 6.5 Bioenergy-fired thermal power plants in industrial application -- 6.5.1 Bagasse-fired power plants in the sugar industry -- 6.5.2 Solid biomass-fired power plants -- 6.5.3 Pyrolysis power plants -- 6.5.4 Biogas-fired power plants -- Exercises and questions -- Exercises -- Questions -- References -- Chapter 7 Electrochemical conversion and storage of energy -- 7.1 Introduction -- 7.1.1 What are electrolysers, fuel cells and batteries? -- 7.1.2 Introducing the electrochemical cell -- 7.1.3 How are electrolysers, fuel cells and batteries related? -- 7.2 Types of fuel cells -- 7.2.1 Introduction -- 7.2.2 Fuel cell types -- 7.2.3 Summary of essential properties of fuel cells -- 7.3 Types of batteries -- 7.3.1 Primary batteries -- 7.3.2 Secondary (rechargeable) batteries -- 7.4 Battery research and development -- Exercises and questions -- Exercises -- Questions -- References -- Chapter 8 Introduction to liquid biofuels -- 8.1 Introduction.

8.2 Types of biofuels -- 8.2.1 What are biofuels? -- 8.2.2 What are the generations of biofuels? -- 8.2.3 Issues with first generation biofuels -- 8.2.4 Biofuel blends -- 8.3 Global production of biofuels -- 8.4 Engine fuel properties and standards -- 8.4.1 Fuel properties -- Octane number -- Cetane number -- Summary -- 8.4.2 Gasoline and diesel engine fuels -- 8.4.3 Fuel standards and legislations -- 8.4.4 Biofuel standards -- 8.4.5 Fuel standards and legislations-the Australian case study -- Exercises, questions and activities -- References -- Chapter 9 Bioethanol and biobutanol -- 9.1 Introduction -- 9.2 Bioethanol -- 9.2.1 Fuel properties of ethanol -- 9.2.2 Industrial production of bioethanol -- 9.2.3 Metabolic pathways for bioethanol -- 9.2.4 Issues with bioethanol fuel -- 9.2.5 Future biofuels through metabolic engineering -- 9.3 Biobutanol -- 9.3.1 Fuel properties of butanol -- 9.3.2 Industrial production of biobutanol -- 9.3.3 Butanol fermentation through the ABE process -- 9.3.4 Improving yield through metabolic engineering -- Exercises and questions -- Exercises -- Questions -- References -- Chapter 10 Biodiesel, biogas and biomethane -- 10.1 Introduction -- 10.2 Biodiesel -- 10.2.1 Introduction -- 10.2.2 Biodiesel as a fuel -- 10.2.3 Fuel properties of biodiesel -- 10.2.4 Industrial production of biodiesel -- 10.2.5 Issues with biodiesel -- 10.3 Biogas and biomethane -- 10.3.1 Biogas -- 10.3.2 Biomethane or renewable natural gas (RNG) -- 10.3.3 Future supply outlook for biogas and biomethane -- Exercises and questions -- References -- Chapter 11 Emerging fuels for transport and power -- 11.1 Introduction -- 11.2 HVO-a better biofuel for diesel engines -- 11.2.1 Production of HVO -- 11.3 Syngas-a gas for many applications -- 11.3.1 Uses of syngas -- 11.4 The FTS process-synthetic fuels for conventional engines -- History -- Nomenclature.

The stages of the FTS process -- 11.5 Pyrolysis oil-new fuel for sea transport and power generation -- 11.6 Hydrogen-green fuel for EVs and storage -- 11.6.1 Hydrogen production -- 11.6.2 Hydrogen as a green fuel -- 11.6.3 Use of hydrogen-the hydrogen economy -- What is zero-emissions hydrogen? -- Exercises and questions -- Exercises -- Questions and research questions -- References -- Chapter 12 Drivers and threats to global renewable energy production -- 12.1 Introduction -- 12.2 Who are the stakeholders in global energy? -- 12.3 Energy and global conflicts -- 12.4 The role of fossil fuel subsidies -- 12.5 New drivers for global RE production -- 12.5.1 Climate change -- 12.5.2 Energy access for all -- Exercises and questions -- References -- Chapter 13 Climate change and future energy technology -- 13.1 Introduction -- 13.2 The net zero by 2050 ultimatum from the UNFCCC -- 13.2.1 The Paris Agreement and its goals -- 13.2.2 The IPCC Special Report on 1.5 °C -- 13.2.3 High Level Dialogue on Energy (HLDE) -- 13.2.4 The Emissions Gap Report 2021 -- 13.3 The science behind climate change -- 13.3.1 Global warming -- 13.3.2 Estimating emissions -- 13.4 COP26 and the global energy transition -- 13.4.1 Goals of COP26 -- 13.4.2 New tools and opportunities for achieving net zero -- 13.5 The energy transition-an Australian case study -- 13.5.1 Australia's net zero plan -- 13.5.2 The role of Australian universities-ANU's grand challenge -- 13.5.3 Summary remarks -- 13.6 COP27 -- Exercises and questions -- Exercises -- Questions and research questions -- References -- Chapter 14 Energy, pandemics and an integrated global development plan -- 14.1 Introduction -- 14.2 Global poverty, the MDGs and the SDGs -- 14.2.1 Poverty and the MDGs -- 14.2.2 Energy access and the SDGs -- History and motivation for the SDGs -- The indicators of sustainable development.

14.3 Energy and economic well-being.

This book is a reference text for graduate researchers, climate scientists, academics and policy-makers. It describes the science, technology and policy behind the production and use of bioenergy for power generation and transportation.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.