Micro-Manufacturing Technologies and Their Applications : A Theoretical and Practical Guide.
Material type:
- text
- computer
- online resource
- 9783319396514
- TS1-2301
Intro -- Preface -- Contents -- Acronyms -- 1 Introduction to Miniaturisation -- 1.1 Introduction -- 1.2 Scaling Laws -- 1.2.1 Geometry -- 1.2.2 Mechanics -- 1.2.3 Dynamics -- 1.2.4 Micro-fluidics -- 1.2.5 Van der Waals Force -- 1.2.6 Electromagnetism -- 1.2.7 Thermodynamics -- 1.2.8 Scaling with Distances -- 1.2.9 Scaling Exponent -- 1.3 Materials -- 1.3.1 Smart Materials -- 1.3.1.1 Piezoelectric Materials -- 1.3.1.2 Shape Memory Alloy -- 1.3.1.3 Electroactive Polymers -- 1.4 Micro-factories -- References -- 2 Micro-injection Moulding -- 2.1 Overview -- 2.1.1 Technical Description -- 2.1.2 Definition of Technology -- 2.2 Materials -- 2.3 Design and Simulation -- 2.3.1 Characterisation-Micro-rheology -- 2.3.2 Rheological Simulation -- 2.3.3 Conclusions -- 2.4 Process and Materials -- 2.4.1 Principles of the Injection Moulding Process -- 2.4.2 Key Features -- 2.4.3 Dosage (Charge) -- 2.4.4 Injection Speed -- 2.4.5 Injection Pressure -- 2.4.6 Holding Pressure -- 2.4.7 Holding Pressure Time -- 2.4.8 Cooling Time -- 2.4.9 Process Temperatures in the Mould, Expansion and Balance -- 2.4.10 Mould Venting -- 2.5 Tools and Machines -- 2.5.1 The Injection Machine -- 2.5.2 Plasticising Systems -- 2.5.3 Micro-injection System Without Plasticising -- 2.5.4 Main Micro-injection Moulding Machines -- 2.5.5 Micro-injection Moulds -- 2.6 Sectors of Application -- 2.7 Handling and Verification of Micro-parts -- 2.7.1 Handling -- 2.7.2 Inspection -- 2.7.3 Morphological Analysis -- 2.7.4 Mechanical Analysis -- 2.8 Application Case: Micro-filter -- 2.8.1 Description -- 2.8.2 Micro-filter Design Analysis (FEM/CAE) -- 2.8.3 Micro-injection Process Simulation -- 2.8.3.1 Filling and Parameters -- 2.8.3.2 Gate Positioning Optimisation -- 2.8.3.3 Welding Lines and Air Traps Analysis -- 2.8.4 Mould Design and Manufacturing -- 2.9 Process Optimisation and Part Production.
Bibliography -- 3 Micro-additive Manufacturing Technology -- 3.1 Overview -- 3.2 Micro-stereolithography (MSL) and Two Photon Polymerisation (2PP) -- 3.2.1 Operating Principles -- 3.2.2 Technology Overview and Systems -- 3.2.3 Materials -- 3.2.4 Applications -- 3.3 Powder Bed Fusion Technologies -- 3.3.1 Operating Principles -- 3.3.2 Technology Overview and Systems -- 3.3.3 Machines and Materials -- 3.3.4 Applications (Table 3.3) -- 3.4 Three Dimensional Printing via Binder Jetting -- 3.4.1 Operating Principles -- 3.4.2 Technology Overview and Systems -- 3.4.3 Machines and Materials -- 3.4.4 Applications -- 3.5 Three Dimensional Printing via Material Jetting -- 3.5.1 Operating Principles -- 3.5.2 Technology Overview and Systems -- 3.5.3 Machines and Materials -- 3.5.4 Materials -- 3.5.5 Applications -- 3.6 Filament Deposition -- 3.6.1 Operating Principles -- 3.6.2 Technology Overview and Systems -- 3.6.3 Machines and Materials -- 3.6.4 Applications -- References -- 4 Manufacturing Technology: Micro-machining -- 4.1 Overview -- 4.1.1 Why Micro-machining? -- 4.1.2 Definitions -- 4.1.2.1 Micro-cutting -- 4.1.2.2 Size Effect -- 4.1.2.3 Uncut Chip Thickness -- 4.1.2.4 Rake Angle -- 4.1.2.5 Shearing, Ploughing, and Rubbing -- 4.2 Engineering Materials and Material Properties -- 4.2.1 Elastic and Plastic Material Behaviour -- 4.2.2 Failure of Materials -- 4.2.2.1 Crack Propagation -- 4.3 Design and Simulation -- 4.3.1 Introduction -- 4.3.2 Why Simulate Micro-cutting? -- 4.3.2.1 Micro-machining Simulation -- 4.3.2.2 Machining Strategies -- 4.3.3 Micro Versus Conventional Machining -- 4.3.4 Issues Covered by Modelling of Micro-machining -- 4.3.5 Mechanistic Modelling of the Micro-cutting Process -- 4.3.6 Finite Element Analysis (FEA) -- 4.3.6.1 Established Predictive FEA Models -- 4.3.7 Molecular Dynamics Modelling Approach -- 4.3.7.1 Established MD Models.
4.3.8 Multi-scale Simulation Methods -- 4.3.9 Indicative Costs -- 4.4 Process, Tools and Machines -- 4.4.1 Process -- 4.4.1.1 Machining Scale -- 4.4.1.2 Cutting Forces -- 4.4.1.3 Size Effect -- 4.4.1.4 Burr Formation -- 4.4.2 Micro-tools -- 4.4.2.1 Tool Size -- 4.4.2.2 Tool Wear and Breakage -- 4.4.2.3 Micro-tool Coatings -- 4.4.3 Machine-Tools -- 4.4.3.1 Micro-machining Platform Characteristics -- 4.4.3.2 Machine-Tools Suppliers -- 4.4.4 Measurement Systems -- 4.4.4.1 Geometric Measurement: Pre-processing -- 4.4.4.2 Geometric Measurement: During Processing -- 4.4.4.3 Geometric Measurement: Post-processing -- 4.4.4.4 Process Parameters Measurement -- 4.5 Sectors and Applications -- 4.5.1 Industry Sectors and Application Areas -- References -- 5 Micro-waterjet Technology -- 5.1 Introduction to Waterjet Technology -- 5.2 High Energy Fluid Jet Generation -- 5.2.1 High Pressure Pump -- 5.2.2 High Pressure Circuit -- 5.2.3 Handling System and Fixturing -- 5.2.4 Energy Conversion -- 5.2.5 Machining Mechanism and Cutting Heads -- 5.2.6 Abrasive Feeding System -- 5.2.7 Catcher -- 5.3 AWJ Quality Assessment -- 5.3.1 Machining Defects Description -- 5.3.2 Defect Reduction Methods -- 5.4 Micro-AWJ Technology -- 5.5 Micro-AWJ Key Features -- 5.5.1 Micro-AWJ Enabling Characteristics -- 5.6 Micro-AWJ Case Studies -- 5.6.1 Precision Through Defect Compensation -- 5.6.2 Thin Layers Drilling -- 5.6.3 Inhomogeneous Materials -- 5.6.4 Advanced Alloys for Biomedical Applications -- 5.6.5 Thin Details Cutting on POM -- 5.6.6 Stainless Steel Racks Small Batch -- 5.6.7 Deep Holes with Tight Tolerances -- References -- 6 Micro-electro-Discharge Machining (Micro-EDM) -- 6.1 Principle of Electro-Discharge Machining (EDM) -- 6.2 Micro-EDM Process Parameters -- 6.3 Performance of the Micro-EDM Process: Quality Indices.
6.3.1 Micro-EDM Milling Optimisation via Design of Experiments (DoE) -- 6.3.2 Monitoring for Evaluating Micro-EDM Performance -- 6.3.3 Tool Wear and Tool Path: How to Obtain Surface and Profile Accuracy in Micro-EDM Features -- 6.3.4 High Aspect Ratio Cavities: Role of Tool Wear and Dielectric Flushing -- 6.4 Materials and Effects on Micro-EDM Process -- 6.5 Applications -- 6.5.1 Straight Bevel Micro-gear -- 6.5.2 Customised Internal Fixation Devices for Orthopaedic Surgery -- 6.5.3 Micro-EDM Milling/Sinking Combined Approaches: Micro-filter Mould -- References -- 7 Moulded Interconnect Devices -- 7.1 Overview-Moulded Interconnect Devices -- 7.2 Materials -- 7.2.1 Introduction -- 7.2.2 Requirement for Substrate Material -- 7.2.3 Typical MID Materials -- 7.3 Processes -- 7.3.1 Overview -- 7.3.2 Two-Shot Injection Moulding -- 7.3.3 Laser Direct Structuring (LDS) -- 7.3.4 Hot Embossing -- 7.3.5 Aerosol-Jet Printing -- 7.3.6 Advantages and Challenges of Each Technology -- 7.4 MID Assembly -- 7.4.1 Mounting Techniques -- 7.4.2 Positioning -- 7.4.3 Challenges -- 7.5 Sectors and Applications -- 7.6 Application Case -- References -- 8 Micro-scale Geometry Measurement -- 8.1 Introduction -- 8.2 Contact Techniques -- 8.2.1 Stylus Instruments -- 8.2.2 Micro Coordinate Measuring Machines -- 8.2.2.1 Introduction to Coordinate Measuring Machines -- 8.2.2.2 Capability of Commercial Micro-CMMs -- 8.2.2.3 Micro-probing Systems -- 8.2.2.4 Sources of Error on CMMs -- 8.3 Non-contact Techniques -- 8.3.1 Focus Variation Microscopy -- 8.3.2 Coherence Scanning Interferometry -- 8.3.3 Confocal Microscopy -- 8.3.4 Laser Triangulation -- 8.3.5 Micro-fringe Projection -- 8.4 Tomographic Methods -- 8.4.1 Optical Coherence Tomography -- 8.4.2 X-ray Computed Tomography -- References -- 9 Micro-assembly -- 9.1 Introduction -- 9.2 Hybrid Micro-systems Production.
9.3 Micro-assembly Definition -- 9.4 Micro-assembly Methods -- 9.4.1 Classification -- 9.4.2 Robotic Micro-assembly -- 9.4.3 Self-assembly -- 9.4.4 Robotic Micro-assembly and Self-assembly Compared -- 9.4.5 Hybrid Micro-assembly -- 9.5 Robots for Micro-assembly -- 9.5.1 Definition -- 9.5.2 Classification -- 9.5.3 Design Considerations -- 9.5.4 Example of Robots for Micro-assembly -- 9.6 Micro-manipulation Systems -- 9.6.1 Issues in Micro-manipulation -- 9.6.2 Micro-manipulation Strategies -- 9.6.2.1 Contact Manipulation -- 9.6.2.2 Contact-Free Handling -- 9.6.3 Release Strategies -- 9.6.3.1 Active Techniques -- 9.6.3.2 Passive Techniques -- 9.7 Sensors and Control Methods for Micro-assembly -- 9.7.1 Vision -- 9.7.2 Force Sensing -- 9.7.3 Environmental Conditioning in Micro-assembly -- 9.8 A Case Study: The ITIA Micro-assembly Work-Cell -- References -- 10 Market Analysis, Technological Foresight, and Business Models for Micro-manufacturing -- 10.1 Introduction -- 10.2 Micro-manufacturing Market Analysis -- 10.2.1 Business Drivers and Market Demands -- 10.2.2 Main Sectors of Application -- 10.2.2.1 Healthcare -- 10.2.2.2 Energy -- 10.2.2.3 Aerospace -- 10.2.3 Key Stakeholders -- 10.2.4 Strengths, Weaknesses, Opportunities, Threats -- 10.3 Future of Micro-manufacturing Market and Technological Foresighting -- 10.3.1 Market Trends -- 10.3.2 Future Sectors -- 10.3.3 Future Applications and Technologies -- 10.3.3.1 Future of Micro-parts -- 10.3.3.2 Future of Micro-manufacturing Technologies -- 10.4 Business Models for Micro-manufacturing -- 10.4.1 What Is a Business Model? -- 10.4.1.1 Business Model Elements -- 10.4.2 Innovative Business Models -- 10.4.3 Current Business Models for Micro-manufacturing -- 10.4.3.1 Traditional Machinery Selling -- 10.4.3.2 Production Service -- 10.4.4 Innovative Business Models for Micro-manufacturing.
10.4.4.1 Personalised Manufacturing for Healthcare with Closed Integration with Hospitals.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.