ORPP logo
Image from Google Jackets

Introduction to Computational Fluid Dynamics : Development, Application and Analysis.

By: Material type: TextTextSeries: Ane/Athena BksPublisher: Chicester : John Wiley & Sons, Incorporated, 2016Copyright date: ©2017Edition: 1st edDescription: 1 online resource (416 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119003014
Subject(s): Genre/Form: Additional physical formats: Print version:: Introduction to Computational Fluid DynamicsDDC classification:
  • 620.10640285
LOC classification:
  • TJ254.5.S537 2017
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Dedication -- FOREWORD -- PREFACE -- Contents -- Part I. INTRODUCTION AND ESSENTIALS -- 1. Introduction -- 1.1 CFD: What is it? -- 1.1.1 CFD as a Scientic and Engineering Analysis Tool -- 1.1.2 Analogy with a Video-Camera -- 1.2 CFD: Why to study? -- 1.3 Novelty, Scope, and Purpose of this Book -- 2. Introduction to CFD: Development, Application, and Analysis -- 2.1 CFD Development -- 2.1.1 Grid Generation: Pre-Processor -- 2.1.2 Discretization Method: Algebraic Formulation -- 2.1.3 Solution Methodology: Solver -- 2.1.4 Computation of Engineering-Parameters: Post-Processor -- 2.1.5 Testing -- 2.2 CFD Application -- 2.3 CFD Analysis -- 2.4 Closure -- 3. Essentials of Fluid-Dynamics and Heat-Transfer for CFD -- 3.1 Physical Laws -- 3.1.1 Fundamental/Conservation Laws -- 3.1.2 Subsidiary Laws -- 3.2 Momentum and Energy Transport Mechanisms -- 3.3 Physical Law based Differential Formulation -- 3.3.1 Continuity Equation -- 3.3.2 Transport Equation -- 3.4 Generalized Volumetric and Flux Terms, and their Differential Formulation -- 3.4.1 Volumetric Term -- 3.4.2 Flux-Term -- 3.4.3 Discussion -- 3.5 Mathematical Formulation -- 3.5.1 Dimensional Study -- 3.5.2 Non-Dimensional Study -- 3.6 Closure -- 4. Essentials of Numerical-Methods for CFD -- 4.1 Finite Difference Method: A Differential to Algebraic Formulation for Governing PDE and BCs -- 4.1.1 Grid Generation -- 4.1.2 Finite Difference Method -- 4.1.3 Applications to CFD -- 4.2 Iterative Solution of System of LAEs for a Flow Property -- 4.2.1 Iterative Methods -- 4.2.2 Applications to CFD -- 4.3 Numerical Differentiation for Local Engineering Parameters -- 4.3.1 Differentiation Formulas -- 4.3.2 Applications to CFD -- 4.4 Numerical Integration for the Total value of Engineering-Parameters -- 4.4.1 Integration Rules -- 4.4.2 Applications to CFD -- 4.5 Closure.
Problems -- Part II. CFD FOR A CARTESIAN-GEOMETRY -- 5. Computational Heat Conduction -- 5.1 Physical Law based Finite Volume Method -- 5.1.1 Energy Conservation Law for a Control Volume -- 5.1.2 Algebraic Formulation -- 5.1.3 Approximations -- 5.1.4 Approximated Algebraic-Formulation -- 5.1.5 Discussion -- 5.2 Finite Difference Method for Boundary Conditions -- 5.3 Flux based Solution Methodology on a Uniform Grid: Explicit-Method -- 5.3.1 One-Dimensional Conduction -- 5.3.2 Two-Dimensional Conduction -- 5.4 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Explicit and Implicit Method -- 5.4.1 One-Dimensional Conduction -- 5.4.2 Two-Dimensional Conduction -- Problems -- 6. Computational Heat Advection -- 6.1 Physical Law based Finite Volume Method -- 6.1.1 Energy Conservation Law for a Control Volume -- 6.1.2 Algebraic Formulation -- 6.1.3 Approximations -- 6.1.4 Approximated Algebraic Formulation -- 6.1.5 Discussion -- 6.2 Flux based Solution Methodology on a Uniform Grid: Explicit-Method -- 6.2.1 Explicit-Method -- 6.2.2 Implementation Details -- 6.2.3 Solution Algorithm -- 6.3 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Explicit and Implicit Method -- 6.3.1 Advection Scheme on a Non-Uniform Grid -- 6.3.2 Explicit and Implicit Method -- 6.3.3 Implementation Details -- 6.3.4 Solution Algorithm -- Problems -- 7. Computational Heat Convection -- 7.1 Physical Law based Finite Volume Method -- 7.1.1 Energy Conservation Law for a Control Volume -- 7.1.2 Algebraic Formulation -- 7.1.3 Approximated Algebraic Formulation -- 7.2 Flux based Solution Methodology on a Uniform Grid: Explicit-Method -- 7.2.1 Explicit-Method -- 7.2.2 Implementation Details -- 7.2.3 Solution Algorithm -- 7.3 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Explicit and Implicit Method -- Problems.
8. Computational Fluid Dynamics: Physical Law based Finite Volume Method -- 8.1 Generalized Variables for the Combined Heat and Fluid Flow -- 8.2 Conservation Laws for a Control Volume -- 8.3 Algebraic Formulation -- 8.4 Approximations -- 8.5 Approximated Algebraic Formulation -- 8.5.1 Mass Conservation -- 8.5.2 Momentum/Energy Conservation -- 8.6 Closure -- 9. Computational Fluid Dynamics on a Staggered Grid -- 9.1 Challenges in the CFD Development -- 9.1.1 Non-Linearity -- 9.1.2 Equation for Pressure -- 9.1.3 Pressure-Velocity Decoupling -- 9.2 A Staggered Grid: One of the First Strategy to avoid Pressure-Velocity Decoupling -- 9.3 Physical Law based FVM for a Staggered Grid -- 9.4 Flux based Solution Methodology on a Uniform Grid: Semi-Explicit Method -- 9.4.1 Philosophy of Pressure-Correction Method -- 9.4.2 Semi-Explicit Method -- 9.4.3 Implementation Details -- 9.4.4 Solution Algorithm -- 9.5 Initial and Boundary Conditions -- 9.5.1 Initial Condition -- 9.5.2 Boundary Condition -- Problems -- 10. Computational Fluid Dynamics on a Co-located Grid -- 10.1 Momentum-Interpolation Method: Strategy to avoid the Pressure-Velocity Decoupling on a Col-ocated Grid -- 10.2 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Semi-Explicit and Semi-Implicit Method -- 10.2.1 Predictor Step -- 10.2.2 Corrector Step -- 10.2.3 Solution Algorithm -- Problems -- Part III. CFD FOR A COMPLEX-GEOMETRY -- 11. Computational Heat Conduction on a Curvilinear Grid -- 11.1 Curvilinear Grid Generation -- 11.1.1 Algebraic Grid Generation -- 11.1.2 Elliptic Grid Generation -- 11.2 Physical Law based Finite Volume Method -- 11.2.1 Unsteady and Source Term -- 11.2.2 Diffusion Term -- 11.2.3 All Terms -- 11.3 Computation of Geometrical Properties -- 11.4 Flux based Solution Methodology -- 11.4.1 Explicit Method -- 11.4.2 Implementation Details -- Problems.
12. Computational Fluid Dynamics on a Curvilinear Grid -- 12.1 Physical Law based Finite Volume Method -- 12.1.1 Mass Conservation -- 12.1.2 Momentum Conservation -- 12.2 Solution Methodology: Semi-Explicit Method -- 12.2.1 Predictor Step -- 12.2.2 Corrector Step -- Problems -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Dedication -- FOREWORD -- PREFACE -- Contents -- Part I. INTRODUCTION AND ESSENTIALS -- 1. Introduction -- 1.1 CFD: What is it? -- 1.1.1 CFD as a Scientic and Engineering Analysis Tool -- 1.1.2 Analogy with a Video-Camera -- 1.2 CFD: Why to study? -- 1.3 Novelty, Scope, and Purpose of this Book -- 2. Introduction to CFD: Development, Application, and Analysis -- 2.1 CFD Development -- 2.1.1 Grid Generation: Pre-Processor -- 2.1.2 Discretization Method: Algebraic Formulation -- 2.1.3 Solution Methodology: Solver -- 2.1.4 Computation of Engineering-Parameters: Post-Processor -- 2.1.5 Testing -- 2.2 CFD Application -- 2.3 CFD Analysis -- 2.4 Closure -- 3. Essentials of Fluid-Dynamics and Heat-Transfer for CFD -- 3.1 Physical Laws -- 3.1.1 Fundamental/Conservation Laws -- 3.1.2 Subsidiary Laws -- 3.2 Momentum and Energy Transport Mechanisms -- 3.3 Physical Law based Differential Formulation -- 3.3.1 Continuity Equation -- 3.3.2 Transport Equation -- 3.4 Generalized Volumetric and Flux Terms, and their Differential Formulation -- 3.4.1 Volumetric Term -- 3.4.2 Flux-Term -- 3.4.3 Discussion -- 3.5 Mathematical Formulation -- 3.5.1 Dimensional Study -- 3.5.2 Non-Dimensional Study -- 3.6 Closure -- 4. Essentials of Numerical-Methods for CFD -- 4.1 Finite Difference Method: A Differential to Algebraic Formulation for Governing PDE and BCs -- 4.1.1 Grid Generation -- 4.1.2 Finite Difference Method -- 4.1.3 Applications to CFD -- 4.2 Iterative Solution of System of LAEs for a Flow Property -- 4.2.1 Iterative Methods -- 4.2.2 Applications to CFD -- 4.3 Numerical Differentiation for Local Engineering Parameters -- 4.3.1 Differentiation Formulas -- 4.3.2 Applications to CFD -- 4.4 Numerical Integration for the Total value of Engineering-Parameters -- 4.4.1 Integration Rules -- 4.4.2 Applications to CFD -- 4.5 Closure.

Problems -- Part II. CFD FOR A CARTESIAN-GEOMETRY -- 5. Computational Heat Conduction -- 5.1 Physical Law based Finite Volume Method -- 5.1.1 Energy Conservation Law for a Control Volume -- 5.1.2 Algebraic Formulation -- 5.1.3 Approximations -- 5.1.4 Approximated Algebraic-Formulation -- 5.1.5 Discussion -- 5.2 Finite Difference Method for Boundary Conditions -- 5.3 Flux based Solution Methodology on a Uniform Grid: Explicit-Method -- 5.3.1 One-Dimensional Conduction -- 5.3.2 Two-Dimensional Conduction -- 5.4 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Explicit and Implicit Method -- 5.4.1 One-Dimensional Conduction -- 5.4.2 Two-Dimensional Conduction -- Problems -- 6. Computational Heat Advection -- 6.1 Physical Law based Finite Volume Method -- 6.1.1 Energy Conservation Law for a Control Volume -- 6.1.2 Algebraic Formulation -- 6.1.3 Approximations -- 6.1.4 Approximated Algebraic Formulation -- 6.1.5 Discussion -- 6.2 Flux based Solution Methodology on a Uniform Grid: Explicit-Method -- 6.2.1 Explicit-Method -- 6.2.2 Implementation Details -- 6.2.3 Solution Algorithm -- 6.3 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Explicit and Implicit Method -- 6.3.1 Advection Scheme on a Non-Uniform Grid -- 6.3.2 Explicit and Implicit Method -- 6.3.3 Implementation Details -- 6.3.4 Solution Algorithm -- Problems -- 7. Computational Heat Convection -- 7.1 Physical Law based Finite Volume Method -- 7.1.1 Energy Conservation Law for a Control Volume -- 7.1.2 Algebraic Formulation -- 7.1.3 Approximated Algebraic Formulation -- 7.2 Flux based Solution Methodology on a Uniform Grid: Explicit-Method -- 7.2.1 Explicit-Method -- 7.2.2 Implementation Details -- 7.2.3 Solution Algorithm -- 7.3 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Explicit and Implicit Method -- Problems.

8. Computational Fluid Dynamics: Physical Law based Finite Volume Method -- 8.1 Generalized Variables for the Combined Heat and Fluid Flow -- 8.2 Conservation Laws for a Control Volume -- 8.3 Algebraic Formulation -- 8.4 Approximations -- 8.5 Approximated Algebraic Formulation -- 8.5.1 Mass Conservation -- 8.5.2 Momentum/Energy Conservation -- 8.6 Closure -- 9. Computational Fluid Dynamics on a Staggered Grid -- 9.1 Challenges in the CFD Development -- 9.1.1 Non-Linearity -- 9.1.2 Equation for Pressure -- 9.1.3 Pressure-Velocity Decoupling -- 9.2 A Staggered Grid: One of the First Strategy to avoid Pressure-Velocity Decoupling -- 9.3 Physical Law based FVM for a Staggered Grid -- 9.4 Flux based Solution Methodology on a Uniform Grid: Semi-Explicit Method -- 9.4.1 Philosophy of Pressure-Correction Method -- 9.4.2 Semi-Explicit Method -- 9.4.3 Implementation Details -- 9.4.4 Solution Algorithm -- 9.5 Initial and Boundary Conditions -- 9.5.1 Initial Condition -- 9.5.2 Boundary Condition -- Problems -- 10. Computational Fluid Dynamics on a Co-located Grid -- 10.1 Momentum-Interpolation Method: Strategy to avoid the Pressure-Velocity Decoupling on a Col-ocated Grid -- 10.2 Coefficients of LAEs based Solution Methodology on a Non-Uniform Grid: Semi-Explicit and Semi-Implicit Method -- 10.2.1 Predictor Step -- 10.2.2 Corrector Step -- 10.2.3 Solution Algorithm -- Problems -- Part III. CFD FOR A COMPLEX-GEOMETRY -- 11. Computational Heat Conduction on a Curvilinear Grid -- 11.1 Curvilinear Grid Generation -- 11.1.1 Algebraic Grid Generation -- 11.1.2 Elliptic Grid Generation -- 11.2 Physical Law based Finite Volume Method -- 11.2.1 Unsteady and Source Term -- 11.2.2 Diffusion Term -- 11.2.3 All Terms -- 11.3 Computation of Geometrical Properties -- 11.4 Flux based Solution Methodology -- 11.4.1 Explicit Method -- 11.4.2 Implementation Details -- Problems.

12. Computational Fluid Dynamics on a Curvilinear Grid -- 12.1 Physical Law based Finite Volume Method -- 12.1.1 Mass Conservation -- 12.1.2 Momentum Conservation -- 12.2 Solution Methodology: Semi-Explicit Method -- 12.2.1 Predictor Step -- 12.2.2 Corrector Step -- Problems -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.