ORPP logo
Image from Google Jackets

The Optimal Version of Hua's Fundamental Theorem of Geometry of Rectangular Matrices.

By: Material type: TextTextSeries: Memoirs of the American Mathematical Society SeriesPublisher: Providence : American Mathematical Society, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (86 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470418922
Subject(s): Genre/Form: Additional physical formats: Print version:: The Optimal Version of Hua's Fundamental Theorem of Geometry of Rectangular MatricesDDC classification:
  • 512.9/434
LOC classification:
  • QA188 .S45 2014
Online resources:
Contents:
Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Notation and basic definitions -- Chapter 3. Examples -- Chapter 4. Statement of main results -- Chapter 5. Proofs -- 5.1. Preliminary results -- 5.2. Splitting the proof of main results into subcases -- 5.3. Square case -- 5.4. Degenerate case -- 5.5. Non-square case -- 5.6. Proofs of corollaries -- Acknowledgments -- Bibliography -- Back Cover.
Summary: Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous result for maps acting between the spaces of rectangular matrices of different sizes? A division ring is said to be EAS if it is not isomorphic to any proper subring. For matrices over EAS division rings the author solves all three problems simultaneously, thus obtaining the optimal version of Hua's theorem. In the case of general division rings he gets such an optimal result only for square matrices and gives examples showing that it cannot be extended to the non-square case.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Notation and basic definitions -- Chapter 3. Examples -- Chapter 4. Statement of main results -- Chapter 5. Proofs -- 5.1. Preliminary results -- 5.2. Splitting the proof of main results into subcases -- 5.3. Square case -- 5.4. Degenerate case -- 5.5. Non-square case -- 5.6. Proofs of corollaries -- Acknowledgments -- Bibliography -- Back Cover.

Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous result for maps acting between the spaces of rectangular matrices of different sizes? A division ring is said to be EAS if it is not isomorphic to any proper subring. For matrices over EAS division rings the author solves all three problems simultaneously, thus obtaining the optimal version of Hua's theorem. In the case of general division rings he gets such an optimal result only for square matrices and gives examples showing that it cannot be extended to the non-square case.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.