ORPP logo
Image from Google Jackets

Neural Control Engineering : The Emerging Intersection Between Control Theory and Neuroscience.

By: Material type: TextTextSeries: Computational Neuroscience SeriesPublisher: Cambridge : MIT Press, 2011Copyright date: ©2011Edition: 1st edDescription: 1 online resource (403 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780262312080
Subject(s): Genre/Form: Additional physical formats: Print version:: Neural Control EngineeringDDC classification:
  • 612.8
LOC classification:
  • QP357.5 .S35 2012
Online resources:
Contents:
Intro -- Contents -- Series Foreword -- Preface -- Chapter 1. Introduction -- 1.1 Overview -- 1.2 A Motivational Example -- 1.3 Least Squares -- 1.4 Expectation and Covariance -- 1.5 Recursive Least Squares -- 1.6 It's a Bayesian World -- Exercises -- Chapter 2. Kalman Filtering -- 2.1 Linear Kalman Filtering -- 2.2 Nonlinear Kalman Filtering -- 2.3 Why Not Neuroscience? -- Exercises -- Chapter 3. The Hodgkin-Huxley Equations -- 3.1 Pre-Hodgkin and Huxley -- 3.2 Hodgkin and Huxley and Colleagues -- 3.3 Hodgkin and Huxley -- Exercises -- Chapter 4. Simplified Neuronal Models -- 4.1 The Van der Pol Equations -- 4.2 Frequency Demultiplication -- 4.3 Bonhoeffer and the Passivation of Iron -- 4.4 Fitzhugh and Neural Dynamics -- 4.5 Nagumo's Electrical Circuit -- 4.6 Rinzel's Reduction -- 4.7 Simplified Models and Control -- Exercises -- Chapter 5. Bridging from Kalman to Neuron -- 5.1 Introduction -- 5.2 Variables and Parameters -- 5.3 Tracking the Lorenz System -- 5.4 Parameter Tracking -- 5.5 The Fitzhugh-Nagumo Equations -- Exercises -- Chapter 6. Spatiotemporal Cortical Dynamics-The Wilson Cowan Equations -- 6.1 BeforeWilson and Cowan -- 6.2 Wilson and Cowan before 1973 -- 6.3 Wilson and Cowan during 1973 -- 6.4 Wilson and Cowan after 1973 -- 6.5 Spirals, Rings, and ChaoticWaves in Brain -- 6.6 Wilson-Cowan in a Control Framework -- Exercises -- Chapter 7. Empirical Models -- 7.1 Overview -- 7.2 The Second Rehnquist Court -- 7.3 The Geometry of Singular Value Decomposition -- 7.4 Static Image Decomposition -- 7.5 Dynamic Spatiotemporal Image Analysis -- 7.6 Spatiotemporal Brain Dynamics -- Exercises -- Chapter 8. Model Inadequacy -- 8.1 Introduction -- 8.2 The Philosophy of Model Inadequacy -- 8.3 The Mapping Paradigm-Initial Conditions -- 8.4 The Transformation Paradigm -- 8.5 Generalized Synchrony.
8.6 Data Assimilation as Synchronization of Truth and Model -- 8.7 The Consensus Set -- Exercises -- Chapter 9. Brain-Machine Interfaces -- 9.1 Overview -- 9.2 The Brain -- 9.3 In the Beginning -- 9.4 After the Beginning -- 9.5 Beyond Bins-Moving from Rates to Points in Time -- 9.6 Back from the Future -- 9.7 When Bad Models Happen to Good Monkeys -- 9.8 Toward the Future -- Chapter 10. Parkinson's Disease -- 10.1 Overview -- 10.2 The Networks of Parkinson's Disease -- 10.3 The Thalamus-It's Not a Simple Relay Anymore -- 10.4 The Contribution of China White -- 10.5 Dynamics of Parkinson's Networks -- 10.6 The Deep Brain Stimulation Paradox -- 10.7 Reductionist Cracking the Deep Brain Stimulation Paradox -- 10.8 A Cost Function for Deep Brain Stimulation -- 10.9 Fusing Experimental GPi Recordings with DBS Models -- 10.10 Toward a Control Framework for Parkinson's Disease -- 10.11 Looking Foward -- Chapter 11. Control Systems with Electrical Fields -- 11.1 Introduction -- 11.2 A Brief History of the Science of Electrical Fields and Neurons -- 11.3 Applications of Electrical Fields in Vitro -- 11.4 A Brief Affair with Chaos -- 11.5 And a Fling with Ice Ages -- 11.6 Feedback Control with Electrical Fields -- 11.7 Controlling Propagation-Speed Bumps for the Brain -- 11.8 Neurons in the Resistive Brain -- 11.9 How Small an Electrical FieldWill Modulate Neuronal Activity? -- 11.10 Transcranial Low-Frequency Fields -- 11.11 Electrical Fields for ControlWithin the Intact Brain -- 11.12 To Sleep Perchance to Dream -- 11.13 Toward an Implantable Field Controller -- Chapter 12. Assimilating Seizures -- 12.1 Introduction -- 12.2 Hodgkin-Huxley Revisited -- 12.3 The Dynamics of Potassium -- 12.4 Control of Single Cells with Hodgkin-Huxley and Potassium Dynamics -- 12.5 Assimilating Seizures -- 12.6 Assimilation in the Intact Brain -- 12.7 Perspective.
Chapter 13. Assimilating Minds -- 13.1 We Are All State Estimation Machines -- 13.2 Of Mind and Matter -- 13.3 Robot Beliefs versus Cogito Ergo MRI -- 13.4 Black versus Gray Swans -- 13.5 Mirror, Mirror, within My Mind -- 13.6 Carl Jung's Synchronicity -- Bibliography -- Index.
Summary: How powerful new methods in nonlinear control engineering can be applied to neuroscience, from fundamental model formulation to advanced medical applications.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Series Foreword -- Preface -- Chapter 1. Introduction -- 1.1 Overview -- 1.2 A Motivational Example -- 1.3 Least Squares -- 1.4 Expectation and Covariance -- 1.5 Recursive Least Squares -- 1.6 It's a Bayesian World -- Exercises -- Chapter 2. Kalman Filtering -- 2.1 Linear Kalman Filtering -- 2.2 Nonlinear Kalman Filtering -- 2.3 Why Not Neuroscience? -- Exercises -- Chapter 3. The Hodgkin-Huxley Equations -- 3.1 Pre-Hodgkin and Huxley -- 3.2 Hodgkin and Huxley and Colleagues -- 3.3 Hodgkin and Huxley -- Exercises -- Chapter 4. Simplified Neuronal Models -- 4.1 The Van der Pol Equations -- 4.2 Frequency Demultiplication -- 4.3 Bonhoeffer and the Passivation of Iron -- 4.4 Fitzhugh and Neural Dynamics -- 4.5 Nagumo's Electrical Circuit -- 4.6 Rinzel's Reduction -- 4.7 Simplified Models and Control -- Exercises -- Chapter 5. Bridging from Kalman to Neuron -- 5.1 Introduction -- 5.2 Variables and Parameters -- 5.3 Tracking the Lorenz System -- 5.4 Parameter Tracking -- 5.5 The Fitzhugh-Nagumo Equations -- Exercises -- Chapter 6. Spatiotemporal Cortical Dynamics-The Wilson Cowan Equations -- 6.1 BeforeWilson and Cowan -- 6.2 Wilson and Cowan before 1973 -- 6.3 Wilson and Cowan during 1973 -- 6.4 Wilson and Cowan after 1973 -- 6.5 Spirals, Rings, and ChaoticWaves in Brain -- 6.6 Wilson-Cowan in a Control Framework -- Exercises -- Chapter 7. Empirical Models -- 7.1 Overview -- 7.2 The Second Rehnquist Court -- 7.3 The Geometry of Singular Value Decomposition -- 7.4 Static Image Decomposition -- 7.5 Dynamic Spatiotemporal Image Analysis -- 7.6 Spatiotemporal Brain Dynamics -- Exercises -- Chapter 8. Model Inadequacy -- 8.1 Introduction -- 8.2 The Philosophy of Model Inadequacy -- 8.3 The Mapping Paradigm-Initial Conditions -- 8.4 The Transformation Paradigm -- 8.5 Generalized Synchrony.

8.6 Data Assimilation as Synchronization of Truth and Model -- 8.7 The Consensus Set -- Exercises -- Chapter 9. Brain-Machine Interfaces -- 9.1 Overview -- 9.2 The Brain -- 9.3 In the Beginning -- 9.4 After the Beginning -- 9.5 Beyond Bins-Moving from Rates to Points in Time -- 9.6 Back from the Future -- 9.7 When Bad Models Happen to Good Monkeys -- 9.8 Toward the Future -- Chapter 10. Parkinson's Disease -- 10.1 Overview -- 10.2 The Networks of Parkinson's Disease -- 10.3 The Thalamus-It's Not a Simple Relay Anymore -- 10.4 The Contribution of China White -- 10.5 Dynamics of Parkinson's Networks -- 10.6 The Deep Brain Stimulation Paradox -- 10.7 Reductionist Cracking the Deep Brain Stimulation Paradox -- 10.8 A Cost Function for Deep Brain Stimulation -- 10.9 Fusing Experimental GPi Recordings with DBS Models -- 10.10 Toward a Control Framework for Parkinson's Disease -- 10.11 Looking Foward -- Chapter 11. Control Systems with Electrical Fields -- 11.1 Introduction -- 11.2 A Brief History of the Science of Electrical Fields and Neurons -- 11.3 Applications of Electrical Fields in Vitro -- 11.4 A Brief Affair with Chaos -- 11.5 And a Fling with Ice Ages -- 11.6 Feedback Control with Electrical Fields -- 11.7 Controlling Propagation-Speed Bumps for the Brain -- 11.8 Neurons in the Resistive Brain -- 11.9 How Small an Electrical FieldWill Modulate Neuronal Activity? -- 11.10 Transcranial Low-Frequency Fields -- 11.11 Electrical Fields for ControlWithin the Intact Brain -- 11.12 To Sleep Perchance to Dream -- 11.13 Toward an Implantable Field Controller -- Chapter 12. Assimilating Seizures -- 12.1 Introduction -- 12.2 Hodgkin-Huxley Revisited -- 12.3 The Dynamics of Potassium -- 12.4 Control of Single Cells with Hodgkin-Huxley and Potassium Dynamics -- 12.5 Assimilating Seizures -- 12.6 Assimilation in the Intact Brain -- 12.7 Perspective.

Chapter 13. Assimilating Minds -- 13.1 We Are All State Estimation Machines -- 13.2 Of Mind and Matter -- 13.3 Robot Beliefs versus Cogito Ergo MRI -- 13.4 Black versus Gray Swans -- 13.5 Mirror, Mirror, within My Mind -- 13.6 Carl Jung's Synchronicity -- Bibliography -- Index.

How powerful new methods in nonlinear control engineering can be applied to neuroscience, from fundamental model formulation to advanced medical applications.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.