ORPP logo
Image from Google Jackets

Complex Contour Integral Representation of Cardinal Spline Functions : Contemporary Math.

By: Material type: TextTextSeries: Contemporary MathematicsPublisher: Providence : American Mathematical Society, 1982Copyright date: ©1982Edition: 1st edDescription: 1 online resource (125 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780821875933
Subject(s): Genre/Form: Additional physical formats: Print version:: Complex Contour Integral Representation of Cardinal Spline FunctionsDDC classification:
  • 511/.42
LOC classification:
  • QA224 -- .S27 1982eb
Online resources:
Contents:
Intro -- Contents -- Foreword -- Preface -- Acknowledgements -- 1. Cardinal Spline Functions -- 2. A Complex Contour Integral Representation of Basis Spline Functions (Compact Paths) -- 3. The Case of Equidistant Knots -- 4. Cardinal Exponential Spline Functions and Interpolants -- 5. Inversion of Laplace Transform -- 6. A Complex Contour Integral Representation of Cardinal Exponential Spline Functions (Non-Compact Paths) -- 7. A Complex Contour Integral Representation of Euler-Frobenius Polynomials (Non-Compact Paths) -- 8. Cardinal Exponential Spline Interpolants of Higher Order -- 9. Convergence Behaviour of Cardinal Exponential Spline Interpolants -- 10. Divergence Behaviour of Polynomial Interpolants on Compact Intervals (The Méray-Runge Phenomenon) -- 11. Cardinal Logarithmic Spline Interpolants -- 12. Inversion of Mellin Transform -- 13. A Complex Contour Integral Representation of Cardinal Logarithmic Spline Interpolants (Non-Compact Paths) -- 14. Divergence Behaviour of Cardinal Logarithmic Spline Interpolants (The Newman-Schoenberg Phenomenon) -- 15. Summary and Concluding Remarks -- References -- Subject Index -- Author Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Foreword -- Preface -- Acknowledgements -- 1. Cardinal Spline Functions -- 2. A Complex Contour Integral Representation of Basis Spline Functions (Compact Paths) -- 3. The Case of Equidistant Knots -- 4. Cardinal Exponential Spline Functions and Interpolants -- 5. Inversion of Laplace Transform -- 6. A Complex Contour Integral Representation of Cardinal Exponential Spline Functions (Non-Compact Paths) -- 7. A Complex Contour Integral Representation of Euler-Frobenius Polynomials (Non-Compact Paths) -- 8. Cardinal Exponential Spline Interpolants of Higher Order -- 9. Convergence Behaviour of Cardinal Exponential Spline Interpolants -- 10. Divergence Behaviour of Polynomial Interpolants on Compact Intervals (The Méray-Runge Phenomenon) -- 11. Cardinal Logarithmic Spline Interpolants -- 12. Inversion of Mellin Transform -- 13. A Complex Contour Integral Representation of Cardinal Logarithmic Spline Interpolants (Non-Compact Paths) -- 14. Divergence Behaviour of Cardinal Logarithmic Spline Interpolants (The Newman-Schoenberg Phenomenon) -- 15. Summary and Concluding Remarks -- References -- Subject Index -- Author Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.