ORPP logo
Image from Google Jackets

Understanding Wind Power Technology : Theory, Deployment and Optimisation.

By: Material type: TextTextSeries: New York Academy of Sciences SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (484 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118701546
Subject(s): Genre/Form: Additional physical formats: Print version:: Understanding Wind Power TechnologyDDC classification:
  • 621.31/2136
LOC classification:
  • TJ820 .S33 2014
Online resources:
Contents:
Intro -- Understanding Wind Power Technology: Theory, Deployment and Optimisation -- Copyright -- Contents -- Preface -- About the Authors -- 1 The History of Wind Energy -- 1.1 Introduction -- 1.2 The First Windmills: 600-1890 -- 1.2.1 Technical Development of the First Horizontal Windmills -- 1.3 Generation of Electricity using Wind Farms: Wind Turbines 1890-1930 -- 1.4 The First Phase of Innovation: 1930-1960 -- 1.5 The Second Phase of Innovation and Mass Production: 1960 to Today -- 1.5.1 The State-Supported Development of Large Wind Turbines -- 1.5.2 The Development of Smaller Wind Turbines -- 1.5.3 Wind Farms, Offshore and Grid Connection -- 1.5.4 International Grids -- 1.5.5 To Summarise -- References -- 2 The International Development of Wind Energy -- 2.1 The Modern Energy Debate -- 2.2 The Reinvention of the Energy Market -- 2.3 The Importance of the Power Grid -- 2.4 The New Value-added Chain -- 2.5 International Perspectives -- 2.6 Expansion into Selected Countries -- 2.7 The Role of the EU -- 2.8 International Institutions and Organisations -- 2.8.1 Scenarios -- 2.9 Global Wind Energy Outlook 2012 - The Global View into the Future -- 2.9.1 Development of the Market in Selected Countries -- 2.10 Conclusion -- References -- 3 Wind Resources, Site Assessment and Ecology -- 3.1 Introduction -- 3.2 Wind Resources -- 3.2.1 Global Wind Systems and Ground Roughness -- 3.2.2 Topography and Roughness Length -- 3.2.3 Roughness Classes -- 3.2.4 Contour Lines and Obstacles -- 3.2.5 Wind Resources with WAsP, WindPRO, WindFarmer -- 3.2.6 Correlating Wind Potential with Mesoscale Models and Reanalysis Data -- 3.2.7 Wind in the Wind Farm -- 3.2.8 Wind Frequency Distribution -- 3.2.9 Site Classification and Annual Energy Production -- 3.2.10 Reference Yield and Duration of Increased Subsidy -- 3.3 Acoustics -- 3.3.1 The dB (A) Unit.
3.3.2 Sources of Noise -- 3.3.3 Propagation through the Air -- 3.3.4 Imission Site and Benchmarks -- 3.3.5 Frequency Analysis, Tone Adjustment and Impulse Adjustment -- 3.3.6 Methods of Noise Reduction -- 3.3.7 Regulations for Minimum Distances -- 3.4 Shadow -- 3.5 Turbulence -- 3.5.1 Turbulence from Surrounding Environment -- 3.5.2 Turbulence Attributed to Turbines -- 3.6 Two Comprehensive Software Tools for Planning Wind Farms -- 3.7 Technical Guidelines, FGW Guidelines and IEC Standards -- 3.8 Environmental Influences Bundes-Immissionsschutzgesetz (Federal Imission Control Act) and Approval Process -- 3.8.1 German Imission Protection Law (BImSchG) -- 3.8.2 Approval Process -- 3.8.3 Environmental Impact Assessment (EIA) -- 3.8.4 Specific Aspects of the Process -- 3.8.5 Acceptance -- 3.8.6 Monitoring and Clarifying Plant-Specific Data -- 3.9 Example Problems -- 3.10 Solutions to the Problems -- References -- 4 Aerodynamics and Blade Design -- 4.1 Summary -- 4.2 Horizontal Plants -- 4.2.1 General -- 4.2.2 Basic Aerodynamic Terminology -- 4.3 Integral Momentum Theory -- 4.3.1 Momentum Theory of Wind Turbines: the Betz Limiting Value -- 4.3.2 Changes in Air Density with Temperature and Altitude -- 4.3.3 Influence of the Finite Blade Number -- 4.3.4 Swirl Losses and Local Optimisation of the Blades According to Glauert -- 4.3.5 Losses Due to Profile Drag -- 4.4 Momentum Theory of the Blade Elements -- 4.4.1 The Formulation -- 4.4.2 Example of an Implementation: WT -Perf -- 4.4.3 Optimisation and Design Rules for Blades -- 4.4.4 Extension of the Blade Element Method: The Differential Formulation -- 4.4.5 Three-Dimensional Computational Fluid Dynamics ( CFD) -- 4.4.6 Summary: Horizontal Plants -- 4.5 Vertical Plants -- 4.5.1 General -- 4.5.2 Aerodynamics of H Rotors -- 4.5.3 Aeroelastics of Vertical Axis Rotors -- 4.5.4 A 50 kW Rotor as an Example.
4.5.5 Design Rules for Small Wind Turbines According to H-Darrieus Type A -- 4.5.6 Summary: Vertical Rotors -- 4.6 Wind-Driven Vehicles with a Rotor -- 4.6.1 Introduction -- 4.6.2 On the Theory of Wind-Driven Vehicles -- 4.6.3 Numerical Example -- 4.6.4 The Kiel Design Method -- 4.6.5 Evaluation -- 4.6.6 Completed Vehicles -- 4.6.7 Summary: Wind Vehicles -- 4.7 Exercises -- References -- 5 Rotor Blades -- 5.1 Introduction -- 5.2 Loads on Rotor Blades -- 5.2.1 Types of Loads -- 5.2.2 Fundamentals of the Strength Calculations -- 5.2.3 Cross-Sectional Values of Rotor Blades -- 5.2.4 Stresses and Deformations -- 5.2.5 Section Forces in the Rotor Blade -- 5.2.6 Bending and Inclination -- 5.2.7 Results According to Beam Theory -- 5.3 Vibrations and Buckling -- 5.3.1 Vibrations -- 5.3.2 Buckling and Stability Calculations -- 5.4 Finite Element Calculations -- 5.4.1 Stress Calculations -- 5.4.2 FEM Buckling Calculations -- 5.4.3 FEM Vibration Calculations -- 5.5 Fibre-Reinforced Plastics -- 5.5.1 Introduction -- 5.5.2 Materials (Fibres, Resins, Additives, Sandwich Materials) -- 5.5.3 Laminates and Laminate Properties -- 5.6 Production of Rotor Blades -- 5.6.1 Structural Parts of the Rotor Blades -- 5.6.2 Composite Manufacturing Methods -- 5.6.3 Assembly of the Rotor Blade -- References -- 6 The Drive Train -- 6.1 Introduction -- 6.2 Blade Angle Adjustment Systems -- 6.3 Wind Direction Tracking -- 6.3.1 General -- 6.3.2 Description of the Function -- 6.3.3 Components -- 6.3.4 Variations in Wind Direction Tracking Arrangements -- 6.4 Drive Train Components -- 6.4.1 Rotor Locking and Rotor Rotating Arrangements -- 6.4.2 Rotor Shaft and Mountings -- 6.4.3 Gears -- 6.4.4 Brake and Coupling -- 6.4.5 Generator -- 6.5 Drive Train Concepts -- 6.5.1 Direct-Driven - Double Mounting -- 6.5.2 Direct-Driven - Torque Support.
6.5.3 One-Two Step Geared Drives - Double Bearings -- 6.5.4 One-Two Step Geared Drives - Torque Support -- 6.5.5 Three-Four Step Geared Drives - Double Mountings -- 6.5.6 Three-Four Step Geared Drives - Three-Point Mountings -- 6.5.7 Three-Four Step Geared Drives - Torque Support -- 6.6 Damage and Causes of Damage -- 6.7 Design of Drive Train Components -- 6.7.1 LDD -- 6.7.2 RFC -- 6.8 Intellectual Property in the Wind Industry -- 6.8.1 Example Patents of Drive Trains -- Further reading -- 7 Tower and Foundation -- 7.1 Introduction -- 7.2 Guidelines and Standards -- 7.3 Tower Loading -- 7.3.1 Fatigue Loads -- 7.3.2 Extreme Loads -- 7.4 Verification of the Structure -- 7.4.1 Proof of Load Capacity -- 7.4.2 Proof of Fitness for Use -- 7.4.3 Proof of Foundation -- 7.4.4 Vibration Calculations (Eigen-Frequencies) -- 7.5 Design Details -- 7.5.1 Door Openings in Steel Tube Towers -- 7.5.2 Ring Flange Connections -- 7.5.3 Welded Connections -- 7.6 Materials for Towers -- 7.6.1 Steel -- 7.6.2 Concrete -- 7.6.3 Timber -- 7.6.4 Glass Fibre-Reinforced Plastic -- 7.7 Model Types -- 7.7.1 Tubular Towers -- 7.7.2 Lattice Masts -- 7.7.3 Guyed Towers -- 7.8 Foundations for Onshore WTs -- 7.8.1 Force of Gravity -- 7.8.2 Piles -- 7.8.3 Cables -- 7.9 Exercises -- 7.10 Solutions -- References -- 8 Power Electronics and Generator Systems for Wind Turbines -- 8.1 Introduction -- 8.2 Single-Phase AC Voltage and Three-Phase AC Voltage Systems -- 8.3 Transformer -- 8.3.1 Principle and Calculations -- 8.3.2 Equivalent Circuit Diagram, Phasor Diagram -- 8.3.3 Simplified Equivalent Circuit Diagram -- 8.3.4 Three-Phase Transformers -- 8.4 Generators for Wind Turbines -- 8.4.1 Induction Machine with Short-Circuit Rotor -- 8.4.2 Induction Machine with Slip-Ring Rotor -- 8.5 Synchronous Machines -- 8.5.1 General Function -- 8.5.2 Voltage Equations and Equivalent Circuit Diagram.
8.5.3 Power and Torque -- 8.5.4 Embodiment of Externally Excited Synchronous Machines -- 8.5.5 Permanently Excited Synchronous Machines -- 8.5.6 Variable Speed Operation of Synchronous Machines -- 8.6 Converter Systems for Wind Turbines -- 8.6.1 General Function -- 8.6.2 Frequency Converter in Two-Level Topology -- 8.6.3 Frequency Converter with Multi-Level Circuits -- 8.7 Control of Variable-Speed Converter-Generator Systems -- 8.7.1 Control of the Converter-Fed Induction Generator with Short-Circuit Rotor -- 8.7.2 Control of the Doubly-Fed Induction Machine -- 8.7.3 Control of the Synchronous Machine -- 8.7.4 Control of the Grid-Side Converter -- 8.7.5 Design of the Controls -- 8.8 Compliance with the Grid Connection Requirements -- 8.9 Further Electronic Components -- 8.10 Features of the Power Electronics Generator System in Overview -- 8.11 Exercises -- References -- 9 Control of Wind Energy Systems -- 9.1 Fundamental Relationships -- 9.1.1 Allocation of the WTS Automation -- 9.1.2 System Properties of Energy Conversion in WTs -- 9.1.3 Energy Transformation at the Rotor -- 9.1.4 Energy Conversion at the Drive Train -- 9.1.5 Energy Transformation at the Generator-Converter System -- 9.1.6 Idealised Operating Characteristic Curves of WTs -- 9.2 WT Control Systems -- 9.2.1 Yaw Angle Control -- 9.2.2 Blade Angle Control -- 9.2.3 Active Power Control -- 9.2.4 Reactive Power Control -- 9.2.5 Summary of the Control Behaviour and Extended Operating Ranges of the WT -- 9.3 Operating Management Systems for WTs -- 9.3.1 Control of the Operating Sequence of WTs -- 9.3.2 Safety Systems -- 9.4 Wind Farm Control and Automation Systems -- 9.5 Remote Control and Monitoring -- 9.6 Communication Systems for WTS -- References -- 10 Grid Integration -- 10.1 Energy Supply Grids in Overview -- 10.1.1 General -- 10.1.2 Voltage Level of Electrical Supply Grids.
10.1.3 Grid Structures.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Understanding Wind Power Technology: Theory, Deployment and Optimisation -- Copyright -- Contents -- Preface -- About the Authors -- 1 The History of Wind Energy -- 1.1 Introduction -- 1.2 The First Windmills: 600-1890 -- 1.2.1 Technical Development of the First Horizontal Windmills -- 1.3 Generation of Electricity using Wind Farms: Wind Turbines 1890-1930 -- 1.4 The First Phase of Innovation: 1930-1960 -- 1.5 The Second Phase of Innovation and Mass Production: 1960 to Today -- 1.5.1 The State-Supported Development of Large Wind Turbines -- 1.5.2 The Development of Smaller Wind Turbines -- 1.5.3 Wind Farms, Offshore and Grid Connection -- 1.5.4 International Grids -- 1.5.5 To Summarise -- References -- 2 The International Development of Wind Energy -- 2.1 The Modern Energy Debate -- 2.2 The Reinvention of the Energy Market -- 2.3 The Importance of the Power Grid -- 2.4 The New Value-added Chain -- 2.5 International Perspectives -- 2.6 Expansion into Selected Countries -- 2.7 The Role of the EU -- 2.8 International Institutions and Organisations -- 2.8.1 Scenarios -- 2.9 Global Wind Energy Outlook 2012 - The Global View into the Future -- 2.9.1 Development of the Market in Selected Countries -- 2.10 Conclusion -- References -- 3 Wind Resources, Site Assessment and Ecology -- 3.1 Introduction -- 3.2 Wind Resources -- 3.2.1 Global Wind Systems and Ground Roughness -- 3.2.2 Topography and Roughness Length -- 3.2.3 Roughness Classes -- 3.2.4 Contour Lines and Obstacles -- 3.2.5 Wind Resources with WAsP, WindPRO, WindFarmer -- 3.2.6 Correlating Wind Potential with Mesoscale Models and Reanalysis Data -- 3.2.7 Wind in the Wind Farm -- 3.2.8 Wind Frequency Distribution -- 3.2.9 Site Classification and Annual Energy Production -- 3.2.10 Reference Yield and Duration of Increased Subsidy -- 3.3 Acoustics -- 3.3.1 The dB (A) Unit.

3.3.2 Sources of Noise -- 3.3.3 Propagation through the Air -- 3.3.4 Imission Site and Benchmarks -- 3.3.5 Frequency Analysis, Tone Adjustment and Impulse Adjustment -- 3.3.6 Methods of Noise Reduction -- 3.3.7 Regulations for Minimum Distances -- 3.4 Shadow -- 3.5 Turbulence -- 3.5.1 Turbulence from Surrounding Environment -- 3.5.2 Turbulence Attributed to Turbines -- 3.6 Two Comprehensive Software Tools for Planning Wind Farms -- 3.7 Technical Guidelines, FGW Guidelines and IEC Standards -- 3.8 Environmental Influences Bundes-Immissionsschutzgesetz (Federal Imission Control Act) and Approval Process -- 3.8.1 German Imission Protection Law (BImSchG) -- 3.8.2 Approval Process -- 3.8.3 Environmental Impact Assessment (EIA) -- 3.8.4 Specific Aspects of the Process -- 3.8.5 Acceptance -- 3.8.6 Monitoring and Clarifying Plant-Specific Data -- 3.9 Example Problems -- 3.10 Solutions to the Problems -- References -- 4 Aerodynamics and Blade Design -- 4.1 Summary -- 4.2 Horizontal Plants -- 4.2.1 General -- 4.2.2 Basic Aerodynamic Terminology -- 4.3 Integral Momentum Theory -- 4.3.1 Momentum Theory of Wind Turbines: the Betz Limiting Value -- 4.3.2 Changes in Air Density with Temperature and Altitude -- 4.3.3 Influence of the Finite Blade Number -- 4.3.4 Swirl Losses and Local Optimisation of the Blades According to Glauert -- 4.3.5 Losses Due to Profile Drag -- 4.4 Momentum Theory of the Blade Elements -- 4.4.1 The Formulation -- 4.4.2 Example of an Implementation: WT -Perf -- 4.4.3 Optimisation and Design Rules for Blades -- 4.4.4 Extension of the Blade Element Method: The Differential Formulation -- 4.4.5 Three-Dimensional Computational Fluid Dynamics ( CFD) -- 4.4.6 Summary: Horizontal Plants -- 4.5 Vertical Plants -- 4.5.1 General -- 4.5.2 Aerodynamics of H Rotors -- 4.5.3 Aeroelastics of Vertical Axis Rotors -- 4.5.4 A 50 kW Rotor as an Example.

4.5.5 Design Rules for Small Wind Turbines According to H-Darrieus Type A -- 4.5.6 Summary: Vertical Rotors -- 4.6 Wind-Driven Vehicles with a Rotor -- 4.6.1 Introduction -- 4.6.2 On the Theory of Wind-Driven Vehicles -- 4.6.3 Numerical Example -- 4.6.4 The Kiel Design Method -- 4.6.5 Evaluation -- 4.6.6 Completed Vehicles -- 4.6.7 Summary: Wind Vehicles -- 4.7 Exercises -- References -- 5 Rotor Blades -- 5.1 Introduction -- 5.2 Loads on Rotor Blades -- 5.2.1 Types of Loads -- 5.2.2 Fundamentals of the Strength Calculations -- 5.2.3 Cross-Sectional Values of Rotor Blades -- 5.2.4 Stresses and Deformations -- 5.2.5 Section Forces in the Rotor Blade -- 5.2.6 Bending and Inclination -- 5.2.7 Results According to Beam Theory -- 5.3 Vibrations and Buckling -- 5.3.1 Vibrations -- 5.3.2 Buckling and Stability Calculations -- 5.4 Finite Element Calculations -- 5.4.1 Stress Calculations -- 5.4.2 FEM Buckling Calculations -- 5.4.3 FEM Vibration Calculations -- 5.5 Fibre-Reinforced Plastics -- 5.5.1 Introduction -- 5.5.2 Materials (Fibres, Resins, Additives, Sandwich Materials) -- 5.5.3 Laminates and Laminate Properties -- 5.6 Production of Rotor Blades -- 5.6.1 Structural Parts of the Rotor Blades -- 5.6.2 Composite Manufacturing Methods -- 5.6.3 Assembly of the Rotor Blade -- References -- 6 The Drive Train -- 6.1 Introduction -- 6.2 Blade Angle Adjustment Systems -- 6.3 Wind Direction Tracking -- 6.3.1 General -- 6.3.2 Description of the Function -- 6.3.3 Components -- 6.3.4 Variations in Wind Direction Tracking Arrangements -- 6.4 Drive Train Components -- 6.4.1 Rotor Locking and Rotor Rotating Arrangements -- 6.4.2 Rotor Shaft and Mountings -- 6.4.3 Gears -- 6.4.4 Brake and Coupling -- 6.4.5 Generator -- 6.5 Drive Train Concepts -- 6.5.1 Direct-Driven - Double Mounting -- 6.5.2 Direct-Driven - Torque Support.

6.5.3 One-Two Step Geared Drives - Double Bearings -- 6.5.4 One-Two Step Geared Drives - Torque Support -- 6.5.5 Three-Four Step Geared Drives - Double Mountings -- 6.5.6 Three-Four Step Geared Drives - Three-Point Mountings -- 6.5.7 Three-Four Step Geared Drives - Torque Support -- 6.6 Damage and Causes of Damage -- 6.7 Design of Drive Train Components -- 6.7.1 LDD -- 6.7.2 RFC -- 6.8 Intellectual Property in the Wind Industry -- 6.8.1 Example Patents of Drive Trains -- Further reading -- 7 Tower and Foundation -- 7.1 Introduction -- 7.2 Guidelines and Standards -- 7.3 Tower Loading -- 7.3.1 Fatigue Loads -- 7.3.2 Extreme Loads -- 7.4 Verification of the Structure -- 7.4.1 Proof of Load Capacity -- 7.4.2 Proof of Fitness for Use -- 7.4.3 Proof of Foundation -- 7.4.4 Vibration Calculations (Eigen-Frequencies) -- 7.5 Design Details -- 7.5.1 Door Openings in Steel Tube Towers -- 7.5.2 Ring Flange Connections -- 7.5.3 Welded Connections -- 7.6 Materials for Towers -- 7.6.1 Steel -- 7.6.2 Concrete -- 7.6.3 Timber -- 7.6.4 Glass Fibre-Reinforced Plastic -- 7.7 Model Types -- 7.7.1 Tubular Towers -- 7.7.2 Lattice Masts -- 7.7.3 Guyed Towers -- 7.8 Foundations for Onshore WTs -- 7.8.1 Force of Gravity -- 7.8.2 Piles -- 7.8.3 Cables -- 7.9 Exercises -- 7.10 Solutions -- References -- 8 Power Electronics and Generator Systems for Wind Turbines -- 8.1 Introduction -- 8.2 Single-Phase AC Voltage and Three-Phase AC Voltage Systems -- 8.3 Transformer -- 8.3.1 Principle and Calculations -- 8.3.2 Equivalent Circuit Diagram, Phasor Diagram -- 8.3.3 Simplified Equivalent Circuit Diagram -- 8.3.4 Three-Phase Transformers -- 8.4 Generators for Wind Turbines -- 8.4.1 Induction Machine with Short-Circuit Rotor -- 8.4.2 Induction Machine with Slip-Ring Rotor -- 8.5 Synchronous Machines -- 8.5.1 General Function -- 8.5.2 Voltage Equations and Equivalent Circuit Diagram.

8.5.3 Power and Torque -- 8.5.4 Embodiment of Externally Excited Synchronous Machines -- 8.5.5 Permanently Excited Synchronous Machines -- 8.5.6 Variable Speed Operation of Synchronous Machines -- 8.6 Converter Systems for Wind Turbines -- 8.6.1 General Function -- 8.6.2 Frequency Converter in Two-Level Topology -- 8.6.3 Frequency Converter with Multi-Level Circuits -- 8.7 Control of Variable-Speed Converter-Generator Systems -- 8.7.1 Control of the Converter-Fed Induction Generator with Short-Circuit Rotor -- 8.7.2 Control of the Doubly-Fed Induction Machine -- 8.7.3 Control of the Synchronous Machine -- 8.7.4 Control of the Grid-Side Converter -- 8.7.5 Design of the Controls -- 8.8 Compliance with the Grid Connection Requirements -- 8.9 Further Electronic Components -- 8.10 Features of the Power Electronics Generator System in Overview -- 8.11 Exercises -- References -- 9 Control of Wind Energy Systems -- 9.1 Fundamental Relationships -- 9.1.1 Allocation of the WTS Automation -- 9.1.2 System Properties of Energy Conversion in WTs -- 9.1.3 Energy Transformation at the Rotor -- 9.1.4 Energy Conversion at the Drive Train -- 9.1.5 Energy Transformation at the Generator-Converter System -- 9.1.6 Idealised Operating Characteristic Curves of WTs -- 9.2 WT Control Systems -- 9.2.1 Yaw Angle Control -- 9.2.2 Blade Angle Control -- 9.2.3 Active Power Control -- 9.2.4 Reactive Power Control -- 9.2.5 Summary of the Control Behaviour and Extended Operating Ranges of the WT -- 9.3 Operating Management Systems for WTs -- 9.3.1 Control of the Operating Sequence of WTs -- 9.3.2 Safety Systems -- 9.4 Wind Farm Control and Automation Systems -- 9.5 Remote Control and Monitoring -- 9.6 Communication Systems for WTS -- References -- 10 Grid Integration -- 10.1 Energy Supply Grids in Overview -- 10.1.1 General -- 10.1.2 Voltage Level of Electrical Supply Grids.

10.1.3 Grid Structures.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.