ORPP logo
Image from Google Jackets

Multiscale Materials Modeling : Approaches to Full Multiscaling.

By: Contributor(s): Material type: TextTextPublisher: Berlin/Boston : Walter de Gruyter GmbH, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (346 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783110412451
Subject(s): Genre/Form: Additional physical formats: Print version:: Multiscale Materials ModelingDDC classification:
  • 620.1/10151
LOC classification:
  • TA404.23.M85 2016
Online resources:
Contents:
Intro -- Contents -- List of contributing authors -- Preface -- Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects -- 1. Linking nanoscale and macroscale -- 1.1 Introduction -- 1.2 Nanoscale information from the material -- 1.3 Mesoscale theory -- 1.4 Micro:macroscale theory -- 1.5 Connection of length scales -- 1.6 Conclusions -- 2. Multiscale simulations on the coarsening of Cu-rich precipitates in a-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations -- 2.1 Introduction -- 2.2 Multiscale Approach -- 2.3 Simulation Methods and Applied Models -- 2.3.1 Cu-precipitation - Kinetic Monte-Carlo Simulations -- 2.3.2 Structural Coherency - Molecular Dynamics Simulations -- 2.3.3 Particle Coarsening - Phase-Field Method -- 2.4 Simulation Results -- 2.4.1 Kinetic Monte Carlo simulations and Broken-Bond Model -- 2.4.2 Molecular Dynamics simulations -- 2.4.3 Phase-Field Method Simulations -- 2.4.4 Phase-field Results -- 2.5 Conclusions -- 3. Multiscale modeling predictions of age hardening curves in Al-Cu alloys -- 3.1 Introduction -- 3.2 Atomistic modeling of precipitation hardening -- 3.2.1 Methodology -- 3.2.2 GP zone strengthening -- 3.2.3 ?" strengthening -- 3.3 Atomistic modeling of solute hardening -- 3.4 Dislocation dynamics model for macroscopic precipitate strength predictions -- 3.5 Modeling of precipitate kinetics -- 3.6 Age hardening predictions of Al-4 wt.% Cu aged at 110 °C -- 3.7 Effect of Cu concentration and aging temperature -- 3.8 Role of thermal activation and direct comparison to experiment -- 3.9 Summary and conclusion -- 4. Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries -- 4.1 Introduction -- 4.2 Dynamics of shear-coupled motion of grain boundaries and coupling modes -- 4.3 Molecular Dynamics -- 4.3.1 Computational procedure.
4.3.2 Shear-coupled motion at low temperatures -- 4.3.3 Shear coupled motion at medium temperatures -- 4.3.4 Nudged elastic band calculations -- 4.4 Kinetic Monte Carlo -- 4.4.1 Simulation methodology -- 4.4.2 Simulation results and discussion -- 4.5 Concluding remarks -- 4.A Effective shear modulus for planar GBs: Application to [001] STGB contained in bicrystal structures -- 5. Product Properties of a two-phase magneto-electric composite -- 5.1 Introduction -- 5.2 Theoretical framework -- 5.2.1 Magneto-electro-mechanical boundary value problem -- 5.2.2 Constitutive framework on the microscale -- 5.2.3 Constitutive framework of ME composites on the macroscale -- 5.3 Synthesis and manufacturing of ME composites -- 5.3.1 Synthesis schemes -- 5.3.2 Synthesis results for 0-3 composites -- 5.3.3 Experimental details -- 5.4 Computational determination of magneto-electro-mechanical properties of ME composites -- 5.4.1 Computational characterization of the magneto-electro-mechanical properties of an ideal microstructure -- 5.4.2 Computational characterization of the magneto-electro-mechanical properties of a real microstructure -- 5.5 Conclusion -- 6. Coupled atomistic-continuum study of the effects of C atoms at a-Fe dislocation cores -- 6.1 Introduction -- 6.2 Coupling atomistic and continuum domains -- 6.2.1 Atomistic domain -- 6.2.2 Continuum domain -- 6.2.3 Coupling scheme -- 6.3 Verification by dislocation analysis -- 6.4 Carbon influence on critical stress -- 6.4.1 Screw dislocation -- 6.4.2 Edge dislocation -- 6.4.3 Discussion -- 6.5 Conclusion -- Part II: Multiscale simulations of plastic deformation and fracture -- 7. Niobium/alumina bicrystal interface fracture -- 7.1 Introduction -- 7.2 Concept of modelling -- 7.3 Results and discussion -- 7.4 Conclusions -- 8. Atomistically informed crystal plasticity model for body-centred cubic iron.
8.1 Introduction -- 8.2 Crystal plasticity approach -- 8.3 Atomistic studies -- 8.3.1 Orientation dependence of the critical stress -- 8.3.2 Influence of shear stresses perpendicular to the glide direction -- 8.3.3 Influence of tension and compression perpendicular to the glide direction -- 8.4 FEM study of a bcc iron single crystal -- 8.5 Sensitivity analysis of the flow rule parameters -- 8.6 Summary -- 9. FE2AT - finite element informed atomistic simulations -- 9.1 Introduction -- 9.2 Methodology of FE2AT -- 9.2.1 Atom-localization in a finite element mesh -- 9.2.2 Interpolation of nodal displacements -- 9.2.3 The FE2AT approach -- 9.3 Application examples -- 9.3.1 Bending of a nano-beam -- 9.3.2 Fracture -- 9.4 Discussion -- 9.5 Summary -- 10. Multiscale fatigue crack growth modelling for welded stiffened panels -- 10.1 Introduction -- 10.2 Molecular dynamics (MD) simulation of dislocation development in iron -- 10.2.1 Methods and model -- 10.2.2 Results and discussion -- 10.3 Microstructural crack nucleation and propagation -- 10.4 Modeling and simulation of crack propagation in welded stiffened panels -- 10.4.1 Specimen's geometry and loading conditions -- 10.4.2 Modeling of welding residual stresses in a stiffened panel by using FEM -- 10.4.3 Stress intensity factors and fatigue crack growth rate -- 10.5 Conclusions -- 11. Molecular dynamics study on low temperature brittleness in tungsten single crystals -- 11.1 Introduction -- 11.2 A combined model of molecular dynamics with micromechanics -- 11.2.1 The principle of the combined model -- 11.2.2 Flexible boundary conditions using body forces -- 11.2.3 Transformation from an atomistic dislocation to an elastic dislocation -- 11.2.4 Movement of a molecular dynamics region with crack propagation -- 11.3 Simulation of a brittle fracture process in tungsten single crystals.
11.3.1 Calculation conditions and additional procedures for the simulation of tungsten single crystals -- 11.3.2 Simulation results and size dependency of the molecular dynamics region on the results -- 11.4 Investigation of brittle fracture processes and temperature dependency of fracture toughness at low temperature -- 11.4.1 Simulation results at low temperature -- 11.4.2 A brittle fracture process -- 11.4.3 Temperature dependency of fracture toughness -- 11.5 Discussion -- 11.6 Conclusion -- 12. Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure -- 12.1 Introduction -- 12.2 Experimental investigation of static recrystallization -- 12.3 Digital material representation of the ferritic-pearlitic microstructure -- 12.4 Multi scale model of rolling -- 12.5 Cellular automata model of static recrystallization -- 12.6 Conclusions -- 13. Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites -- 13.1 Introduction -- 13.2 Used Materials -- 13.3 RVE model - tensile test -- 13.4 Molecular dynamics simulations: Derivation of the traction separation law -- 13.5 Results and discussion -- 13.6 Conclusion and outlook -- Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites -- 14. Multiscale Modeling of Nano-Biosensors -- 14.1 Top-down Information Passage -- 14.2 Bottom-up Information Passage -- 14.3 Conclusion -- 15. Finite strain compressive behaviour of CNT/epoxy nanocomposites -- 15.1 Introduction -- 15.2 Framework of modelling -- 15.2.1 Representative volume elements (RVEs) -- 15.2.2 Computational homogenisation: RVE-to-macro transition -- 15.3 Results and discussion -- 15.3.1 Mesh convergence -- 15.3.2 RVE size and ensemble size.
15.3.3 2D versus 3D RVE-based analyses of finite strain compressive behaviour of the nanocomposite -- 15.3.4 Computational time -- 15.3.5 Comparison with experiments -- 15.4 Conclusion -- 16. Peptide-zinc oxide interaction -- 16.1 Introduction -- 16.2 Material and Methods -- 16.2.1 Using MD simulations to estimate the adsorption affinity of the peptide -- 16.2.2 FEM simulations -- 16.3 Results and Discussion -- 16.3.1 MD-Simulations -- 16.3.2 Multiscale simulations -- 16.4 Conclusions -- 16.A Appendix -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- List of contributing authors -- Preface -- Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects -- 1. Linking nanoscale and macroscale -- 1.1 Introduction -- 1.2 Nanoscale information from the material -- 1.3 Mesoscale theory -- 1.4 Micro:macroscale theory -- 1.5 Connection of length scales -- 1.6 Conclusions -- 2. Multiscale simulations on the coarsening of Cu-rich precipitates in a-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations -- 2.1 Introduction -- 2.2 Multiscale Approach -- 2.3 Simulation Methods and Applied Models -- 2.3.1 Cu-precipitation - Kinetic Monte-Carlo Simulations -- 2.3.2 Structural Coherency - Molecular Dynamics Simulations -- 2.3.3 Particle Coarsening - Phase-Field Method -- 2.4 Simulation Results -- 2.4.1 Kinetic Monte Carlo simulations and Broken-Bond Model -- 2.4.2 Molecular Dynamics simulations -- 2.4.3 Phase-Field Method Simulations -- 2.4.4 Phase-field Results -- 2.5 Conclusions -- 3. Multiscale modeling predictions of age hardening curves in Al-Cu alloys -- 3.1 Introduction -- 3.2 Atomistic modeling of precipitation hardening -- 3.2.1 Methodology -- 3.2.2 GP zone strengthening -- 3.2.3 ?" strengthening -- 3.3 Atomistic modeling of solute hardening -- 3.4 Dislocation dynamics model for macroscopic precipitate strength predictions -- 3.5 Modeling of precipitate kinetics -- 3.6 Age hardening predictions of Al-4 wt.% Cu aged at 110 °C -- 3.7 Effect of Cu concentration and aging temperature -- 3.8 Role of thermal activation and direct comparison to experiment -- 3.9 Summary and conclusion -- 4. Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries -- 4.1 Introduction -- 4.2 Dynamics of shear-coupled motion of grain boundaries and coupling modes -- 4.3 Molecular Dynamics -- 4.3.1 Computational procedure.

4.3.2 Shear-coupled motion at low temperatures -- 4.3.3 Shear coupled motion at medium temperatures -- 4.3.4 Nudged elastic band calculations -- 4.4 Kinetic Monte Carlo -- 4.4.1 Simulation methodology -- 4.4.2 Simulation results and discussion -- 4.5 Concluding remarks -- 4.A Effective shear modulus for planar GBs: Application to [001] STGB contained in bicrystal structures -- 5. Product Properties of a two-phase magneto-electric composite -- 5.1 Introduction -- 5.2 Theoretical framework -- 5.2.1 Magneto-electro-mechanical boundary value problem -- 5.2.2 Constitutive framework on the microscale -- 5.2.3 Constitutive framework of ME composites on the macroscale -- 5.3 Synthesis and manufacturing of ME composites -- 5.3.1 Synthesis schemes -- 5.3.2 Synthesis results for 0-3 composites -- 5.3.3 Experimental details -- 5.4 Computational determination of magneto-electro-mechanical properties of ME composites -- 5.4.1 Computational characterization of the magneto-electro-mechanical properties of an ideal microstructure -- 5.4.2 Computational characterization of the magneto-electro-mechanical properties of a real microstructure -- 5.5 Conclusion -- 6. Coupled atomistic-continuum study of the effects of C atoms at a-Fe dislocation cores -- 6.1 Introduction -- 6.2 Coupling atomistic and continuum domains -- 6.2.1 Atomistic domain -- 6.2.2 Continuum domain -- 6.2.3 Coupling scheme -- 6.3 Verification by dislocation analysis -- 6.4 Carbon influence on critical stress -- 6.4.1 Screw dislocation -- 6.4.2 Edge dislocation -- 6.4.3 Discussion -- 6.5 Conclusion -- Part II: Multiscale simulations of plastic deformation and fracture -- 7. Niobium/alumina bicrystal interface fracture -- 7.1 Introduction -- 7.2 Concept of modelling -- 7.3 Results and discussion -- 7.4 Conclusions -- 8. Atomistically informed crystal plasticity model for body-centred cubic iron.

8.1 Introduction -- 8.2 Crystal plasticity approach -- 8.3 Atomistic studies -- 8.3.1 Orientation dependence of the critical stress -- 8.3.2 Influence of shear stresses perpendicular to the glide direction -- 8.3.3 Influence of tension and compression perpendicular to the glide direction -- 8.4 FEM study of a bcc iron single crystal -- 8.5 Sensitivity analysis of the flow rule parameters -- 8.6 Summary -- 9. FE2AT - finite element informed atomistic simulations -- 9.1 Introduction -- 9.2 Methodology of FE2AT -- 9.2.1 Atom-localization in a finite element mesh -- 9.2.2 Interpolation of nodal displacements -- 9.2.3 The FE2AT approach -- 9.3 Application examples -- 9.3.1 Bending of a nano-beam -- 9.3.2 Fracture -- 9.4 Discussion -- 9.5 Summary -- 10. Multiscale fatigue crack growth modelling for welded stiffened panels -- 10.1 Introduction -- 10.2 Molecular dynamics (MD) simulation of dislocation development in iron -- 10.2.1 Methods and model -- 10.2.2 Results and discussion -- 10.3 Microstructural crack nucleation and propagation -- 10.4 Modeling and simulation of crack propagation in welded stiffened panels -- 10.4.1 Specimen's geometry and loading conditions -- 10.4.2 Modeling of welding residual stresses in a stiffened panel by using FEM -- 10.4.3 Stress intensity factors and fatigue crack growth rate -- 10.5 Conclusions -- 11. Molecular dynamics study on low temperature brittleness in tungsten single crystals -- 11.1 Introduction -- 11.2 A combined model of molecular dynamics with micromechanics -- 11.2.1 The principle of the combined model -- 11.2.2 Flexible boundary conditions using body forces -- 11.2.3 Transformation from an atomistic dislocation to an elastic dislocation -- 11.2.4 Movement of a molecular dynamics region with crack propagation -- 11.3 Simulation of a brittle fracture process in tungsten single crystals.

11.3.1 Calculation conditions and additional procedures for the simulation of tungsten single crystals -- 11.3.2 Simulation results and size dependency of the molecular dynamics region on the results -- 11.4 Investigation of brittle fracture processes and temperature dependency of fracture toughness at low temperature -- 11.4.1 Simulation results at low temperature -- 11.4.2 A brittle fracture process -- 11.4.3 Temperature dependency of fracture toughness -- 11.5 Discussion -- 11.6 Conclusion -- 12. Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure -- 12.1 Introduction -- 12.2 Experimental investigation of static recrystallization -- 12.3 Digital material representation of the ferritic-pearlitic microstructure -- 12.4 Multi scale model of rolling -- 12.5 Cellular automata model of static recrystallization -- 12.6 Conclusions -- 13. Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites -- 13.1 Introduction -- 13.2 Used Materials -- 13.3 RVE model - tensile test -- 13.4 Molecular dynamics simulations: Derivation of the traction separation law -- 13.5 Results and discussion -- 13.6 Conclusion and outlook -- Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites -- 14. Multiscale Modeling of Nano-Biosensors -- 14.1 Top-down Information Passage -- 14.2 Bottom-up Information Passage -- 14.3 Conclusion -- 15. Finite strain compressive behaviour of CNT/epoxy nanocomposites -- 15.1 Introduction -- 15.2 Framework of modelling -- 15.2.1 Representative volume elements (RVEs) -- 15.2.2 Computational homogenisation: RVE-to-macro transition -- 15.3 Results and discussion -- 15.3.1 Mesh convergence -- 15.3.2 RVE size and ensemble size.

15.3.3 2D versus 3D RVE-based analyses of finite strain compressive behaviour of the nanocomposite -- 15.3.4 Computational time -- 15.3.5 Comparison with experiments -- 15.4 Conclusion -- 16. Peptide-zinc oxide interaction -- 16.1 Introduction -- 16.2 Material and Methods -- 16.2.1 Using MD simulations to estimate the adsorption affinity of the peptide -- 16.2.2 FEM simulations -- 16.3 Results and Discussion -- 16.3.1 MD-Simulations -- 16.3.2 Multiscale simulations -- 16.4 Conclusions -- 16.A Appendix -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.