Spintronics for Next Generation Innovative Devices.
Material type:
- text
- computer
- online resource
- 9781118751794
- 621.3
- TK7874.887 -- .S656 2015eb
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Introduction -- Materials for Spintronics -- Spin Injector Materials with High Polarization -- Carbon Spintronics -- Silicon Spintronics -- Spintronics Functions -- Spin-Dependent Transport -- Spin Current, Spin Hall Effect, and Spin Pumping -- Spin Torque -- Spin Seebeck Effect -- Electric Control of Spin Phenomena -- Spin Photonics -- Chapter 1 Fundamentals of Magnetoresistance Effects -- 1.1 Giant Magnetoresistance (GMR) Effect -- 1.1.1 Magnetoresistance Effects in Ferromagnetic Materials -- 1.1.2 Phenomenon of GMR Effect -- 1.1.3 Mechanism of GMR Effect -- 1.1.4 Oscillatory Behavior of Interlayer Exchange Coupling and GMR -- 1.1.5 The Application of GMR and the Spin Valve -- 1.1.6 CIP-GMR and CPP-GMR -- 1.1.7 GMR in Granular Systems -- 1.2 Tunnel Magnetoresistance (TMR) Effect -- 1.2.1 The Principle of TMR -- 1.2.2 TMR Effect in Transition Metals and Alloys with Al-O Tunnel Barrier -- 1.2.3 TMR Effect in Half-Metallic Systems -- 1.2.4 TMR Effect with Coherent Tunneling -- 1.2.5 TMR Effect in Granular Systems -- References -- Chapter 2 Spintronics Materials with High-Spin Polarization -- 2.1 Introduction -- 2.2 Development of Highly Spin Polarized Materials -- 2.3 Device Applications -- 2.3.1 CPP-GMR Devices using Highly Spin Polarized Heusler Alloys -- 2.3.2 Narrow Read Sensor for High Density Recording -- 2.4 Summary -- Acknowledgements -- References -- Chapter 3 Spin Current -- 3.1 Introduction -- 3.2 Concept of Spin Current -- 3.3 An Exact Definition of Spin Current -- 3.3.1 Microscopic Description of Conduction Electrons -- 3.3.2 Conservation of Charge -- 3.3.3 Conservation of Spin and Spin Current -- 3.4 Incoherent Spin Current -- 3.4.1 Fermi-Dirac Distribution [3, 4, 5] -- 3.4.2 Diffusion Equation -- 3.4.3 Spin Diffusion Equation [6].
3.5 Exchange Spin Current -- 3.5.1 Magnetic Order and Exchange Interaction -- 3.5.2 Exchange Spin Current -- 3.5.3 Spin-Wave Spin Current -- 3.6 Topological Spin Current -- 3.6.1 Bulk Topological Spin Current -- 3.6.2 Surface Topological Spin Current -- 3.7 Thermal Spin Current - Spin Seebeck Effect -- 3.7.1 Sample Configuration and Measurement Mechanism -- 3.7.2 Longitudinal Spin Seebeck Effect -- 3.7.3 Transverse Spin Seebeck Effect -- 3.7.4 Thermoelectric Coating based on Spin Seebeck Effect -- 3.7.5 Basic Mechanism of Spin Seebeck Effect -- 3.8 Concluding Remarks -- References -- Chapter 4 Spin Hall Effect and Inverse Spin Hall Effect -- 4.1 Spin Hall Effect -- 4.1.1 Introduction -- 4.1.2 Intrinsic and Extrinsic Hall Effect -- 4.1.3 Experimental Observation of Spin Hall Effect in Semiconductors and Metals -- 4.1.4 Intrinsic Hall Effects for Photons and Magnons -- 4.2 Topological Insulators -- 4.2.1 Two-Dimensional Topological Insulators -- 4.2.2 Three-Dimensional Topological Insulators -- 4.2.3 Experiments on Topological Insulators -- 4.3 Summary -- Acknowledgment -- References -- Chapter 5 Spin Torque (Domain Wall Drive, Magnetization Reversal) -- 5.1 Introduction -- 5.2 Experiment: Current-Driven DW Displacement in a Magnetic Nanowire -- 5.3 EXPERIMENT: Electrical Spectroscopy of Vortex State and Gyration in a Magnetic Disk -- 5.4 Conclusion -- Acknowledgements -- References -- Chapter 6 Spin Pumping -- 6.1 Spin Pumping and Magnetization Damping -- 6.2 Electrically Detected Spin Pumping -- 6.3 A Broader View on Spin Pumping -- References -- Chapter 7 Spin Seebeck Effect -- 7.1 Introduction -- 7.1.1 Landau-Lifshitz-Gilbert Phenomenology -- 7.1.2 Spin-Transfer Torque and Spin Pumping -- 7.1.3 Fluctuation-Dissipation Theorem -- 7.1.4 Spin Hall Effect -- 7.2 Experiments -- 7.2.1 Transverse Configuration -- 7.2.2 Longitudinal Configuration.
7.3 Theory -- 7.3.1 Thermal Spin Pumping -- 7.3.2 Nonequilibrium Magnon -- 7.3.3 Alternative Theory -- 7.4 Summary -- References -- Chapter 8 Spin Conversion at Magnetic Interfaces -- 8.1 Introduction -- 8.2 Optical Detection of Electron Spins -- 8.3 Spin Filtering Effect of Fe3O4 Thin Layers -- 8.4 Electric Tunable Spin Resonant Tunneling Effect -- 8.5 Spin-Injection-induced Magnetic Phase Transition in FeRh -- 8.6 Summary and Future Prospects -- Acknowledgements -- References -- Chapter 9 Carbon-based Spintronics -- 9.1 Introduction -- 9.2 Theories and Importance Concepts in Spin-Dependent Transport and Spin Relaxation -- 9.2.1 Spin-Orbit Interaction -- 9.2.2 Conductance Mismatch -- 9.2.3 Pure Spin Current -- 9.3 Spin-Dependent Transport via Molecules -- 9.3.1 Various Origins of Magnetoresistance -- 9.3.2 Molecular Spintronics using Nanocarbonaceous Molecules -- 9.3.3 Molecular Spintronics using Organic Molecules -- 9.4 Summary -- References -- Appendix -- Chapter 10 Silicon Spintronics for Next-Generation Devices -- 10.1 Recent Progress in Silicon Spintronics -- 10.2 High-Quality Schottky Tunnel Contact -- 10.3 Si-MOSFET Structure for Detecting Spin Accumulation -- 10.4 Spin Injection and Detection in a Si-MOSFET Structure -- 10.5 Summary -- References -- Chapter 11 Electric-Field Control of Magnetism in Ferromagnetic Semiconductors -- 11.1 Introduction -- 11.1.1 Ferromagnetic Semiconductor -- 11.1.2 Electric Field Effect of Ferromagnetic Semiconductor -- 11.2 Experimental Techniques of Electric Field Effect -- 11.2.1 Field Effect Transistor -- 11.2.2 Electric Double Layer Transistor -- 11.2.3 Probe of Ferromagnetism -- 11.3 Electric Field Control of Ferromagnetism in Ferromagnetic Semiconductors -- 11.3.1 (III,Mn)V Ferromagnetic Semiconductors -- 11.3.2 High-T Ferromagnetic Oxide Semiconductor (Ti,Co)O2.
11.3.3 Other Ferromagnetic Semiconductors and Related Compounds -- 11.4 Summary and Prospect -- Acknowledgments -- References -- Chapter 12 Quantum Information Processing Using Nitrogen-Vacancy Centres in Diamond -- 12.1 Introduction -- 12.2 Longitudinal Electron-Spin Relaxation (T1) of NV Centre -- 12.3 Coherence Time (T2) of NV Centre in Diamond with Natural Abundance of 13C -- 12.4 T2* Free-Induction Decay Time -- 12.5 Coherence Time T2 of Electron and Nuclear Spin in 12C-Enriched Diamond -- 12.6 Spin and Optical Properties of NV Centres Close to Surface -- 12.7 Magnetometry -- 12.8 Summary -- References -- Chapter 13 Ultrafast Light-Induced Spin Reversal in Amorphous Rare Earth-Transition Metal Alloy Films -- 13.1 Introduction -- 13.2 Control of Magnetization Dynamics with Precessional Motion -- 13.2.1 Magnetization Reversal Time -- 13.2.2 Angular Momentum Compensation -- 13.2.3 Compositional Dependence of Magnetization Dynamics -- 13.2.4 Precessional Switching by Ultrashort Pulse Laser -- 13.3 Ultrafast Distinct Dynamics of Sublattices and Transient Ferromagnetic State -- 13.4 All Optical Magnetization Switching Phenomena with an Ultrashort Pulsed Laser -- 13.4.1 Ultrafast Heating as a Sufficient Stimulus for Magnetization Reversal in a Multisublattice Ferrimagnet -- 13.4.2 The Contribution of MCD in All-Optical Light Helicity-Dependent Magnetic Switching -- 13.5 Conclusions -- Acknowledgments -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.