ORPP logo
Image from Google Jackets

Leakage Current and Defect Characterization of Short Channel MOSFETs.

By: Material type: TextTextSeries: Research at NaMLab SeriesPublisher: Berlin : Logos Verlag Berlin, 2012Copyright date: ©2014Edition: 1st edDescription: 1 online resource (242 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783832596668
Subject(s): Genre/Form: Additional physical formats: Print version:: Leakage Current and Defect Characterization of Short Channel MOSFETsDDC classification:
  • 621.3815284
LOC classification:
  • TK7871.95 .R655 2014
Online resources:
Contents:
Intro -- 1 Introduction -- 2 Fundamentals of Leakage Currents in MOSFET Devices -- 2.1 Leakage through Gate Oxide -- 2.1.1 Thermally Activated Gate Leakage -- 2.1.2 Tunneling Leakage Through the Gate Dielectric -- 2.2 Subthreshold Leakage from Source to Drain -- 2.3 Leakage from Silicon Space Charge Regions to Transistor Bulk -- 2.3.1 Leakage Current Mechanisms -- 2.3.2 Perimeter Leakage from Source/Drain to Bulk -- 2.3.3 Generation Leakage from Channel Region to Bulk -- 3 Methodology -- 3.1 Current Voltage Measurement -- 3.1.1 Basic Current Voltage Characteristics -- 3.1.2 Separation of Leakage Path's -- 3.1.3 Gated Diode Measurement -- 3.2 Capacitance Voltage Measurement -- 3.3 Charge Pumping Measurement -- 3.4 Simulation -- 3.4.1 Spice Simulation -- 3.4.2 TCAD Simulation -- 4 Impact of Implant Variations on PFET Leakage Current -- 4.1 Process Flow -- 4.2 TCAD Simulation of the Process -- 4.3 Interface Traps -- 4.4 Electrical Measurement and Simulation of Leakage Current -- 4.4.1 Source/Drain Leakage -- 4.4.2 Source/Drain Extension Leakage -- 4.4.3 Generation Leakage from Channel Region to Bulk -- 4.4.4 Gate Induced Drain Leakage -- 4.4.5 Verification of the Defect Model: Gated Diode Measurement -- 4.4.6 Gate Leakage -- 4.4.7 Subthreshold Leakage -- 4.4.8 Conclusion -- 4.5 Carbon Implantation into Junction Extension -- 4.5.1 Description of Experiment -- 4.5.2 Electrical Characterization of Transistor Performance -- 4.5.3 Interface Traps -- 4.5.4 Carbon Dose Dependent Leakage Current -- 4.5.5 Conclusion -- 4.6 Arsenic and Phosphorus Implantation for Threshold Voltage Control -- 4.6.1 Description of Experiment -- 4.6.2 Electrical Characterization of Transistor Performance -- 4.6.3 Leakage Current Dependent on Halo- and Vth Implant -- 4.6.4 Conclusion -- 5 Impact of High-k Process Adjustment on Transistor Leakage Current -- 5.1 High-k Process Flow.
5.2 TCAD Simulation of the Process -- 5.3 Interface Traps -- 5.4 Electrical Measurement and Simulation of Leakage Current -- 5.4.1 Source/Drain Leakage -- 5.4.2 Source/Drain Extension Leakage -- 5.4.3 Generation Leakage from Channel Region to Bulk -- 5.4.4 Gate Induced Drain Leakage -- 5.4.5 Gate Leakage -- 5.4.6 Subthreshold Leakage -- 5.4.7 Conclusion -- 5.5 Comparison of Silicon Oxide and Silicon Nitride Extension Spacer -- 5.5.1 Description of Experiment -- 5.5.2 Electrical Characterization of Transistor Performance -- 5.5.3 Leakage Current Dependence on the Spacer Dielectric -- 5.5.4 Conclusion -- 5.6 Germanium Implantation during Gate Patterning -- 5.6.1 Description of Experiment -- 5.6.2 Electrical Characterization of Transistor Performance -- 5.6.3 Leakage Current Dependence on the Gate Patterning Process -- 5.6.4 Conclusion -- 6 Summary and Outlook -- 6.1 Leakage Currents and Defect Distribution -- 6.2 Carbon in the Junction Extension -- 6.3 Vth- and Halo Implant -- 6.4 Silicon Oxynitride vs. Hafnium Silicon Oxide Gate Dielectric -- 6.4.1 Silicon Oxide vs. Silicon Nitride Extension Spacer -- 6.4.2 Germanium Implantation for Gate Patterning -- 6.5 Outlook -- 7 Bibliography -- 8 Personal Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- 1 Introduction -- 2 Fundamentals of Leakage Currents in MOSFET Devices -- 2.1 Leakage through Gate Oxide -- 2.1.1 Thermally Activated Gate Leakage -- 2.1.2 Tunneling Leakage Through the Gate Dielectric -- 2.2 Subthreshold Leakage from Source to Drain -- 2.3 Leakage from Silicon Space Charge Regions to Transistor Bulk -- 2.3.1 Leakage Current Mechanisms -- 2.3.2 Perimeter Leakage from Source/Drain to Bulk -- 2.3.3 Generation Leakage from Channel Region to Bulk -- 3 Methodology -- 3.1 Current Voltage Measurement -- 3.1.1 Basic Current Voltage Characteristics -- 3.1.2 Separation of Leakage Path's -- 3.1.3 Gated Diode Measurement -- 3.2 Capacitance Voltage Measurement -- 3.3 Charge Pumping Measurement -- 3.4 Simulation -- 3.4.1 Spice Simulation -- 3.4.2 TCAD Simulation -- 4 Impact of Implant Variations on PFET Leakage Current -- 4.1 Process Flow -- 4.2 TCAD Simulation of the Process -- 4.3 Interface Traps -- 4.4 Electrical Measurement and Simulation of Leakage Current -- 4.4.1 Source/Drain Leakage -- 4.4.2 Source/Drain Extension Leakage -- 4.4.3 Generation Leakage from Channel Region to Bulk -- 4.4.4 Gate Induced Drain Leakage -- 4.4.5 Verification of the Defect Model: Gated Diode Measurement -- 4.4.6 Gate Leakage -- 4.4.7 Subthreshold Leakage -- 4.4.8 Conclusion -- 4.5 Carbon Implantation into Junction Extension -- 4.5.1 Description of Experiment -- 4.5.2 Electrical Characterization of Transistor Performance -- 4.5.3 Interface Traps -- 4.5.4 Carbon Dose Dependent Leakage Current -- 4.5.5 Conclusion -- 4.6 Arsenic and Phosphorus Implantation for Threshold Voltage Control -- 4.6.1 Description of Experiment -- 4.6.2 Electrical Characterization of Transistor Performance -- 4.6.3 Leakage Current Dependent on Halo- and Vth Implant -- 4.6.4 Conclusion -- 5 Impact of High-k Process Adjustment on Transistor Leakage Current -- 5.1 High-k Process Flow.

5.2 TCAD Simulation of the Process -- 5.3 Interface Traps -- 5.4 Electrical Measurement and Simulation of Leakage Current -- 5.4.1 Source/Drain Leakage -- 5.4.2 Source/Drain Extension Leakage -- 5.4.3 Generation Leakage from Channel Region to Bulk -- 5.4.4 Gate Induced Drain Leakage -- 5.4.5 Gate Leakage -- 5.4.6 Subthreshold Leakage -- 5.4.7 Conclusion -- 5.5 Comparison of Silicon Oxide and Silicon Nitride Extension Spacer -- 5.5.1 Description of Experiment -- 5.5.2 Electrical Characterization of Transistor Performance -- 5.5.3 Leakage Current Dependence on the Spacer Dielectric -- 5.5.4 Conclusion -- 5.6 Germanium Implantation during Gate Patterning -- 5.6.1 Description of Experiment -- 5.6.2 Electrical Characterization of Transistor Performance -- 5.6.3 Leakage Current Dependence on the Gate Patterning Process -- 5.6.4 Conclusion -- 6 Summary and Outlook -- 6.1 Leakage Currents and Defect Distribution -- 6.2 Carbon in the Junction Extension -- 6.3 Vth- and Halo Implant -- 6.4 Silicon Oxynitride vs. Hafnium Silicon Oxide Gate Dielectric -- 6.4.1 Silicon Oxide vs. Silicon Nitride Extension Spacer -- 6.4.2 Germanium Implantation for Gate Patterning -- 6.5 Outlook -- 7 Bibliography -- 8 Personal Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.