Springer Handbook of Petroleum Technology.
Material type:
- text
- computer
- online resource
- 9783319493473
- TP1-1185
Intro -- Foreword -- Preface -- About the Editors -- Contents -- List of Abbreviations -- 1 Introduction to Petroleum Technology -- 1.1 Petroleum and Its Uses -- 1.2 People and Petroleum -- 1.3 The Oil Business -- 1.4 Macroeconomics -- 1.5 Origin of Fossil Hydrocarbons -- 1.6 Natural Gas, Coal, and Kerogen -- 1.7 Petroleum (Crude Oil) -- 1.8 Oil and Gas Exploration -- 1.9 Drilling and Production (Recovery) -- 1.10 Transportation and Storage -- 1.11 Refining -- 1.12 Petroleum Products -- 1.13 Characterization of Petroleum -- 1.14 Modeling -- 1.15 Petrochemicals -- 1.16 Alternatives to Petroleum -- 1.17 Protecting the Environment -- 1.18 Conclusion -- References -- 2 Safety and the Environment -- 2.1 Introduction and History -- 2.2 Pollution from Petroleum Production and Processing -- 2.3 Significant Accidents and Near-Misses -- 2.4 Agencies Protecting Safety and the Environment -- 2.5 Key Regulations -- 2.6 Pollution Control and Abatement Technology -- 2.7 Summary -- References -- Part A Petroleum Characterization -- 3 Molecular Science, Engineering and Management -- 3.1 Analytical Endeavors in the Petroleum Industry -- 3.2 Analytical Tools -- 3.3 Analytical Strategy -- 3.4 Chromatographic Systems -- 3.5 Mass Spectrometry -- 3.6 Petroleum Biomarker Analysis -- 3.7 Online LC-MS -- 3.8 Ionization for Molecules -- 3.9 Mass Analyzers -- 3.10 Data Interpretation and Management -- 3.11 Molecular Engineering and Management Through Science and Modeling -- 3.12 Conclusion -- References -- 4 Petroinformatics -- 4.1 Petroleum Analysis and Statistical Approaches -- 4.2 Emerging Technologies for Storing, Visualizing, and Processing Crude Oil Data -- 4.3 Summary -- References -- 5 Separations in the Sample Preparation for Sulfur Compound Analysis -- 5.1 The Necessicity of Sample Preparation -- 5.2 Separation -- 5.3 Chromatographic Methods -- 5.4 Conclusion.
References -- 6 Asphaltenes -- 6.1 Overview of Asphaltenes -- 6.2 Reservoir Crude Oils -- 6.3 Asphaltenes and the Yen-Mullins Model -- 6.4 Asphaltene Molecules -- 6.5 Asphaltene Nanoaggregates -- 6.6 Clusters -- 6.7 Intermolecular Interaction of Asphaltenes -- 6.8 The Flory-Huggins-Zuo Equation of State -- 6.9 Conclusions -- References -- 7 Reservoir Evaluation by DFA Measurements and Thermodynamic Analysis -- 7.1 The Borehole Environment -- 7.2 VIS/NIR Spectroscopy of Hydrocarbon Reservoir Fluids -- 7.3 Implementation of DFA Hardware -- 7.4 Basic DFA Operations and Applications -- 7.5 Reservoir Evaluation via DFA and Thermodynamics -- 7.6 Reservoir Case Studies -- 7.7 Conclusions -- References -- 8 Phase Behavior and Properties of Heavy Oils -- 8.1 Background -- 8.2 Phase Behavior and Phase Composition Measurement -- 8.3 Thermophysical Property Measurement -- 8.4 Heavy Oil Characterization -- 8.5 Phase Behavior Correlation and Prediction -- 8.6 Thermophysical Property Simulation and Prediction -- 8.7 Perspectives and Conclusions -- References -- Part B Exploration and Production -- 9 Fundamentals of Petroleum Geology -- 9.1 The Petroleum Cycle -- 9.2 Historical Perspective -- 9.3 Geological Overview -- 9.4 How Petroleum Accumulates and Concentrates -- 9.5 Finding and Locating Petroleum -- 9.6 Future for Petroleum -- References -- 10 Origin of Petroleum -- 10.1 Historic Overview -- 10.2 The Petroleum System -- 10.3 Deposition of Organic-Rich Sedimentary Rocks -- 10.4 Kerogen Formation and the Generative Potential of Source Rocks -- 10.5 Generation and Expulsion of Oil and Gas -- 10.6 Composition of Produced Petroleum -- 10.7 Unconventional Resources -- 10.8 Summary -- References -- 11 Basin and Petroleum System Modeling -- 11.1 Overview -- 11.2 Discussion -- 11.3 Conclusions -- References -- 12 Seismic Explorations -- 12.1 Seismic Data Acquisition.
12.2 Seismic Data Processing -- 12.3 Seismic Data Interpretation -- 12.4 Summary -- References -- 13 Formation Evaluation -- 13.1 What Is Formation Evaluation? -- 13.2 The Need and Purpose of Formation Evaluation -- 13.3 Well Logs -- 13.4 Who Are Petrophysicists and How Do They Work? -- 13.5 How Wireline and MWD/LWD Logs Are Acquired -- 13.6 Uses of Well Logs -- 13.7 Petrophysics and Well Logging: Historical Development -- 13.8 The Schlumberger Legacy -- 13.9 Laboratory Measurements -- 13.10 Well Logging Environment -- 13.11 Well Logging Tools -- 13.12 Putting It All Together -- 13.13 Summary -- References -- 14 Petroleum Production Engineering -- 14.1 Flowing Wells and Gas Lift -- 14.2 Artificial Lift -- 14.3 Well Stimulation -- References -- 15 Offshore Production -- 15.1 Historical Overview -- 15.2 Ownership -- 15.3 Major Offshore Fields -- 15.4 Offshore Oil and Gas Platforms -- 15.5 Metocean Impacts on the Offshore Industry -- 15.6 Future Offshore Production and Drilling -- References -- Part C Refining Technologies -- 16 Petroleum Distillation -- 16.1 Overview -- 16.2 Distillation Theory -- 16.3 Crude Oil Distillation -- 16.4 Summary -- References -- 17 Gasoline Production and Blending -- 17.1 Gasoline Engines -- 17.2 Otto Engine Thermodynamic Cycle -- 17.3 Key Gasoline Properties -- 17.4 Gasoline Specifications -- 17.5 Gasoline Production -- 17.6 Production of Gasoline Blendstocks -- 17.7 Synthetic Gasoline -- 17.8 Reformulated Gasoline (RFG) in the United States -- 17.9 Gasoline Additives -- 17.10 Blending Optimiation -- References -- 18 Catalytic Reforming -- 18.1 Objective of Catalytic Reforming -- 18.2 Feedstock Characteristics and Treatment -- 18.3 Main Reforming Reactions -- 18.4 Reforming Catalyst Overview -- 18.5 Contaminants and Unit Troubleshooting -- 18.6 Reforming Evolution -- 18.7 Catalyst Regeneration -- 18.8 Conclusions.
References -- 19 Fluid-Bed Catalytic Cracking -- 19.1 Catalytic Cracking Chemistry -- 19.2 Feedstocks and Products -- 19.3 Reactor Design -- 19.4 Catalysts -- 19.5 Process Options -- 19.6 Options for Heavy Oil and Residua -- 19.7 Environmental Aspects and the Future -- References -- 20 Sulfur Removal and Recovery -- 20.1 About Sulfur -- 20.2 Sulfur Sources -- 20.3 Sulfur from Petroleum and Natural Gas -- 20.4 Conversion of H_2S to Elemental Sulfur -- 20.5 Sulfur Uses -- 20.6 Pollution from Sulfur -- 20.7 Conclusion -- References -- 21 Modern Approaches to Hydrotreating Catalysis -- 21.1 Overview -- 21.2 Hydrotreating Process -- 21.3 Bases for Hydrotreating -- 21.4 Deep Hydrodesulfurization of Diesel -- 21.5 Development Base of AR Hydrotreatment -- 21.6 Current Aims in Development of Residue Hydrotreatment -- 21.7 Role and Design of Catalyst Support for Residual HDM -- 21.8 Novel Hydrotreatment Processes for Residue Upgrading -- 21.9 Challenges in Hydrotreatment -- References -- 22 Hydrocracking -- 22.1 Role of Hydroprocessing in Petroleum Refining -- 22.2 Feedstock Molecules -- 22.3 Process Variables -- 22.4 Hydrotreating Chemical Reactions -- 22.5 Hydrocracking Chemical Reactions -- 22.6 Hydroprocessing Catalysts -- 22.7 Catalyst Cycles -- 22.8 Hydroprocessing Thermochemistry -- 22.9 Hydroprocessing Kinetics -- 22.10 Hydroprocessing Process Descriptions -- 22.11 Economics -- 22.12 Safety, Reliability, and Protection of the Environment -- 22.13 Conclusion -- 22.14 Additional Reading -- References -- 23 Hydroprocessing Reactor Internals -- 23.1 Elements of Hydroprocessing Reactor Design -- 23.2 Liquid Distribution Tray Design -- 23.3 Quench Mixing Chamber Design -- 23.4 Manway Access and Faster Access Options -- 23.5 Example of Reactor Internals Revamp -- 23.6 Conclusion -- References -- 24 Hydrogen Production -- 24.1 Thermodynamics of Hydrogen.
24.2 Technologies for Producing Hydrogen -- 24.3 Design Parameters for SMRs -- 24.4 Environmental Issues -- 24.5 Monitoring Plant Performance -- 24.6 Plant Performance Improvements -- 24.7 Economics of Hydrogen Production -- 24.8 Conclusion -- 24.9 Further Reading -- 25 Hydrogen Network Optimization -- 25.1 Background -- 25.2 Assets and Liabilities -- 25.3 It's All About Balance -- 25.4 Put Needs Ahead of Wants -- 25.5 Beyond Pinch -- 25.6 Investing versus Saving -- 25.7 Conclusion -- References -- 26 Model-Predictive Control Fundamentals -- 26.1 Useful Definitions -- 26.2 Overview of Economics -- 26.3 Sources of Benefits -- 26.4 Implementation -- 26.5 Costs versus Benefits -- References -- 27 Modeling Refining Processes -- 27.1 Partition-Based Lumping -- 27.2 Composition-Based Modeling -- 27.3 Mathematical Reduction of System Dimension -- 27.4 Kinetics-Hydrodynamics Tradeoff -- 27.5 Total Lumping: Continuum Approximation -- 27.6 Conclusions -- References -- 28 Refinery-Wide Optimization -- 28.1 Overview of Suncor -- 28.2 Refinery-Wide Optimization (RWO) -- 28.3 Rigorous Models for Clean Fuels -- 28.4 Conclusion -- References -- 29 Rigorous Kinetics Modeling of Hydrogen Synthesis -- 29.1 Steam Reforming Kinetics -- 29.2 Heat Transfer Rates and Heat Balances -- 29.3 Pressure Drop -- 29.A Appendix: Simulation Results -- 29.B Appendix: Case Study of Effects of Catalyst Activity in a Primary Reformer -- References -- 30 Delayed Coking -- 30.1 History of Thermal Processing -- 30.2 Delayed Coking Process -- 30.3 Other Thermal Processes -- 30.4 Future Challenges -- References -- 31 Transitioning Refineries from Sweet to Extra Heavy Oil -- 31.1 The Evolving Refinery -- 31.2 Characterization of Extra-Heavy Crudes -- 31.3 Crude Desalting -- 31.4 Aromatics Content Affecting Diesel and Jet Fuel Production.
31.5 High Aromatics Content Affecting Gas Oil Conversion.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.